High Level Computer Vision
Deep Neural Networks and Backpropagation
Exercise Introduction

Seong Joon Oh
Proving minimality of a function

Prove that function $f(u)$ defined on S attains minimum at $u=u^*$.

(1) **Using the first-order condition**
 - If f is differentiable and S is closed & bounded, then the minimum is attained on the set \{u \mid f'(u)=0\} U bdy(S).

(2) **Lower bounding f**
 - If f is bounded from below: $f(u) \geq V$ for all u in S, and if $f(u^*)=V$ for some u^* in S, then the statement above holds.
Smoothness of composite functions

If f is smooth and g is smooth, then $g \circ f$ is also smooth.

“Smooth”:
- differentiable, twice differentiable, ..., infinitely differentiable (C^∞).
- continuously differentiable (C^1), twice continuously differentiable (C^2), ..., infinitely differentiable (C^∞).

Our neural network is C^∞.
Sub-differentiability

For gradient descent algorithm, not even differentiability is needed.

Only needs to be sub-differentiable: derivative exists almost everywhere. (covers many functions with practical usage)

Infinitely differentiable Sub-differentiable Sub-differentiable (but grad = 0 a.e.)
Multivariate chain rule

\[f : \mathbb{R}^M \rightarrow \mathbb{R}^N \]
\[g : \mathbb{R}^L \rightarrow \mathbb{R}^M \]

\[\frac{\partial (f \circ g)_i(x)}{\partial x_k} \bigg|_{x=u} = \sum_{j=1}^{M} \frac{\partial f_i(y)}{\partial y_j} \bigg|_{y=g(u)} \frac{\partial g_j(x)}{\partial x_k} \bigg|_{x=u} \]
Example

\[f : \mathbb{R}^3 \rightarrow \mathbb{R} \]
\[g : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[f(y) = \sum_{p=1}^{3} y_p^2 \]

\[g_p(x) = \sum_{q=1}^{2} w_{pq} x_q^2 \]
Example, continued

$$\frac{\partial f(y)}{\partial y_j} = \frac{\partial}{\partial y_j} \sum_{p=1}^{3} y_p^2$$

$$= \sum_{p=1}^{3} \frac{\partial}{\partial y_j} y_p^2$$

$$= \sum_{p=1}^{3} 2y_p \delta_{jp}$$

$$= 2y_j$$
Example, continued

\[\nabla f(y) = 2y \]
Example, continued

\[\frac{\partial g_j(x)}{\partial x_k} = \]

\[= \sum_{q=1}^{2} \frac{\partial}{\partial x_k} \left(w_{jq} x_q^2 \right) \]

\[= \sum_{q=1}^{2} \left(2 w_{jq} x_q \delta_{kq} \right) \]

\[= 2 w_{jk} x_k \]

\[\sum_{q=1}^{2} w_{jq} x_q \]
Example, continued

$$\frac{\partial (f \circ g) (x)}{\partial x_k} \bigg|_{x=u} = \sum_{j=1}^{3} \frac{\partial f (y)}{\partial y_j} \bigg|_{y=g(u)} \frac{\partial g_j (x)}{\partial x_k} \bigg|_{x=u}$$

$$= \sum_{j=1}^{3} 2g_j (u) (2w_{jk} u_k)$$

$$= 4u_k \sum_{j=1}^{3} w_{jk} g_j (u)$$

$$= 4u_k \sum_{j=1}^{3} w_{jk} \sum_{q=1}^{2} w_{jq} u_q^2$$
Example, continued

\[\nabla (f \circ g)(x) = 4u \cdot (W^T W (u \cdot u)) \]