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1. Introduction

Many deployed learned models are black boxes: given in-
put, returns output. Internal information about the model,
such as the architecture, optimisation procedure, or train-
ing data, is not disclosed explicitly as it might contain pro-
prietary information or make the system more vulnerable.
This work shows that such attributes of neural networks can
be exposed from a sequence of queries. This has multiple
implications. On the one hand, our work exposes the vul-
nerability of black-box neural networks to different types
of attacks – we show that the revealed internal information
helps generate more effective adversarial examples against
the black box model. On the other hand, this technique can
be used for better protection of private content from auto-
matic recognition models using adversarial examples. Our
paper suggests that it is actually hard to draw a line between
white box and black box models.

We consider various types of “model attributes” to re-
veal: see table 1 for a summary. We approach the problem
as a standard supervised learning task applied over mod-
els. First, collect a diverse set of white-box models (“meta-
training set”) that are expected to be similar to the target
black box at least to a certain extent. Then, over the col-
lected meta-training set, train another model (“metamodel”)
that takes a model as input and returns the model attributes
as output. Importantly, since we want to predict attributes at
test time for black-box models, the only information avail-
able for attribute prediction is the query input-output pairs.
As we will see in the experiments, such input-output pairs
allow to predict model attributes surprisingly well.

2. Metamodels

For the method for collecting the meta-training set, see the
main paper. We only introduce the architecture and train-
ing/testing procedures for the metamodels. A metamodel
submits n query inputs

[
xi
]n
i=1

to a black box model g;
the metamodel observes the corresponding model outputs[
g(xi)

]n
i=1

and predicts model attributes. The metamodel
is trained over meta-training models f in the training set

Table 1: MNIST classifier attributes that can be revealed via
black-box access.

Code Attribute Values

A
rc

hi
te

ct
ur

e

act Activation ReLU, PReLU, ELU, Tanh
drop Dropout Yes, No
pool Max pooling Yes, No
ks Conv ker. size 3, 5

#conv #Conv layers 2, 3, 4
#fc #FC layers 2, 3, 4

#par #Parameters 214, · · · , 221

ens Ensemble Yes, No

O
pt

. alg Algorithm SGD, ADAM, RMSprop
bs Batch size 64, 128, 256

D
at

a split Data split All0, Half0/1, Quarter0/1/2/3
size Data size All, Half, Quarter

(f ∼ F). We propose three novel kennen1 metamodels.
See figure 1 for an overview. We assume an MNIST classi-
fier for the sake of clarity.

kennen-o: reason over output kennen-o first selects
a fixed set of queries [xi]i=1···n from a dataset. Both dur-
ing training and testing, always these queries are submitted.
kennen-o learns a classifier mθ to map from the order-
sensitively concatenated n query outputs, [f(xi)]i=1···n
(n × 10 dim for MNIST), to the simultaneous prediction
of 12 attributes in f . The training objective is:

min
θ

E
f∼F

[
12∑
a=1

L
(
ma
θ

(
[f(xi)]ni=1

)
, ya
)]

(1)

where ya is the ground truth label of attribute a, and L
is the cross-entropy loss. With the learned parameter θ̃,
ma
θ̃

(
[g(xi)]ni=1

)
gives the prediction of attribute a for the

black box g.

kennen-i: craft input kennen-i approaches the
problem from a completely new point of view. Over mul-
tiple training set models (white boxes), kennen-i crafts

1kennen means “to know” in German, and “to dig out” in Korean.
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Figure 1: Training procedure for metamodels kennen-o (top)
and kennen-i (bottom).
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Figure 2: Inputs designed to extract internal details from MNIST
digit classifiers. E.g. feeding the middle image reveals the exis-
tence of a max-pooling layer with 95% chance.

a single query input x̃ that is designed to expose inner se-
crets of the training set models. This crafted input turns out
to generalise very well to unseen black-box models, in the
sense that it also reveals the secrets of the unseen black box.
More specifically, we design a query input that forces an
MNIST digit classifier to predict “1” if the classifier has the
attribute A, and 0 otherwise, for example. In other words,
the crafted input re-purposes a digit classifier into a model
attribute classifier. See figure 1 and the learning objective
below for the full detail.

min
x: image

E
f∼F

[L (f(x), ya)] (2)

where f(x) is the 10-dimensional output of the digit clas-
sifier f . The condition x : image ensures the input stays
a valid image x ∈ [0, 1]D with image dimension D. The
loss L, together with the attribute label ya of f , guides the
digit prediction f(x) to reveal the attribute a instead. With
the learned query input x̃, the attribute for the black box g
is predicted by computing g(x̃). In particular, we only need
black-box access to g. Example crafted inputs is shown in
figure 2.

Table 2: Comparison of metamodel methods. See table 1 for the
full names of attributes. Ch.=Chance level.

architecture optim data
act drop pool ks #conv #fc #par ens alg bs size split avg

Ch. 25 50 50 50 33 33 13 50 33 33 33 14 35

o 81 95 95 85 67 77 42 54 72 50 74 90 73
i 44 77 95 89 55 41 32 47 46 37 43 29 53
io 88 96 100 98 80 80 45 60 79 54 85 96 80

kennen-io: combined approach This method com-
bines the previous two approaches.

3. Teaser Results on MNIST Digit Classifiers
See table 2 for the black-box attribute prediction per-
formances of our three metamodels, kennen-o/i/io
trained on 5, 000 meta-training classifiers with n = 100
queries with probability output (except for kennen-i
which only uses one query). kennen-o already performs
far above the random chance in predicting 12 diverse at-
tributes (73% versus 35% on average); neural network out-
put indeed contains rich information about the black box. In
particular, the presence of dropout (95%) or max-pooling
(95%) has been predicted with high precision. It is sur-
prising that optimisation details like algorithm (72%) and
batch size (59%) can also be predicted well above the ran-
dom chance (33% for both). We observe that the training
data attributes are also predicted with high accuracy (72%
and 90% for size and split).
kennen-i has a relatively low performance (average

53%), but kennen-i relies on a cheap resource: 1 query
with single-label output. kennen-i is also performant
at predicting the kernel size (89%) and pooling (95%), at-
tributes that are closely linked to spatial structure of the in-
put. We conjecture kennen-i is relatively effective for
such attributes. kennen-io is superior to kennen-o/i
for all the attributes with average accuracy 80%.

4. More in the ICLR’18 paper!
The main paper2 contains more surprises. (1) Extrapolation
works: the proposed metamodels still predicts attributes re-
liably well even if the meta-training models are significantly
different from the test black box of interest (e.g. different
depth). (2) It is also possible to extract internal information
from top-k or even single-label outputs. (3) Exposed inter-
nal information makes the model more vulnerable to adver-
sarial examples (tested over ImageNet classifiers). The code
for generating the meta-training models over MNIST and
for training the kennen variants are available on github3.

2https://openreview.net/forum?id=BydjJte0-
3https://github.com/coallaoh/WhitenBlackBox

https://openreview.net/forum?id=BydjJte0-
https://github.com/coallaoh/WhitenBlackBox

