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Goal

* Detection and pose estimation of highly articulated
people in sport scenes

* Address the lack-of-training-data problem by
automatically generating novel training samples

* Improve pose estimation by leveraging the strong
evidence from people detector

Contributions

* Novel method for automatic generation of multiple
training examples from a single image

= training from generated and real data improves the
performance over real data alone

real+synt. data

real data
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Joint PS+DP

* Define a new challenge: joint detection and pose
estimation of multiple people “in the wild”

= Data and pose estimation software available
https://www.d2.mpi-inf.mpg.de/articulated-data
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Generation of Novel Training Samples
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Data Annotation 3D shape recovery/animation Generating novel images

1. Fit a 3D shape model [6] to the annotated 3D pose
2. Reshape and animate the 3D shape model

3. Compute 2D mesh with linear blending weights [7] for
the pre-segmented person

4. Morph 2D mesh: use projected 3D shape model joints
5.Render the original appearance to the changed mesh
Statistical 3D human shape model [6]

e Shape learned from 3D laser scans of humans

* Represent shape variations via PCA

 Embed kinematic skeleton with linear blend skinning

Model fitting

* Retarget the 3D shape model skeleton to the annotated
3D pose

— compute inverse kinematics: optimize 3D shape/pose

Varying model shape and pose
e Change shape: sample from the 3D shape distribution
* Change pose: use the motion capture data [1]
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shape changes pose changes

Generation of novel images

* Use projected 3D model joints to reshape/animate the
2D mesh having the pre-computed skinning weights [7]

* Render the appearance and project the novel sample
into the background image

Models

Pose estimation: Pictorial Structures (PS) [3, 5]
* Flexible configuration of body parts with pose prior
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People detection: Deformable Part Model (DPM) [4]

= robust articulated people detection when trained on our

novel samples

Joint PS-DPM model

e Adapt the DPM: train linear regression to predict the
torso endpoints from the DMP model parts

* New torso likelihood: p(e;(1;)) = p,s(e;(1;}))papmei(l;))

Data

* Example novel training images
| Aimate/Resaped IP (ours)

* Proposed “in the wild” challenge
— Multi-scale Leeds Sport Poses (LSP)
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Results

People detection

* Image Parsing (IP) [9]
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Data ratio Initialization

Pose estimation
e Image Parsing (IP) [9]
* Percentage Correct Parts (PCP) criterion

Setting Torso Upper Lower Upper Fore- Head Total
legs legs arms arms

Image Parsing (IP) 849 71,5 615 50.2 36.6 71.2 59.6

+ Reshape (R) 87.8 75.1 659 524 36.1 71.7 61.9

+ Joint PS+DPM 88.8 77.3 67.1 53.7 36.1 73.7 63.1

Andriluka et al., [2] * 83.9 70.5 634 505 35.1 70.7 594

Yang&Ramanan, [10] * 829 69.0 639 551 354 77.6 60.7
Johnson&Everingham, [8] 87.6 74.7 67.1 67.3 45.8 76.8 67.4

* evaluated using our implementation of PCP criterion

People detection/pose estimations “in the wild”
e Multi-scale LSP

* Average Precision (AP) criterion
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Full body Body parts Body parts
(DPM-IP-AR + PS) (DPM-LSP-AR + J. PS+DPM)
Method Torso Upper Lower Upper Fore- Head Total

legs legs arms arms

DPM-LSP-AR + J. PS+DPM 40.5 37.5 30.8 18.0 4.3 34.2 25.6

DPM-LSP-AR 3839 356 29.3 180 4.2 33.6 24.7

DPM-IP-AR + PS 325 31.2 249 158 3.6 282 21.2

DPM-VOC + PS 209 252 20.0 14.2 3.6 274 18.3

PS-IP-R + PS 29.1 28.7 235 14.7 4.0 24.5 19.5
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