

#### State of the Art

• Tree-structured pictorial structures models





- generic kinematic tree
- capture adjacent part dependencies only
- + exact and efficient

# Contributions

• Novel image conditioned pictorial structures model



- + poselet conditioned kinematic tree
- + poselets capture non-adjacent part dependencies
- + exact and efficient

### Poselets

- Detect joint part configurations [2]
- $\Rightarrow$  capture non-adjacent part dependencies
- Trained for different levels of abstraction



Poselets responses vector as **mid-level representation**:

- detect torso using strong detector [7]
- poselet offset w.r.t torso defines center of pooling region
- top response and offset contribute to vector





**Responses vector** 

# **Poselet Conditioned Pictorial Structures** Leonid Pishchulin<sup>1</sup>, Mykhaylo Andriluka<sup>1</sup>, Peter Gehler<sup>2</sup> and Bernt Schiele<sup>1</sup>

<sup>1</sup>Max Planck Institute for Informatics, Saarbrücken, Germany

### **Poselet Conditioned Pictorial Structures**



### I. Mid-level representation based on poselets

• compute poselets responses vector

### II. Predicting pairwise parameters

- pairwise: relative offset  $(\Delta x, \Delta y)$  and rotation  $\theta$
- learn mixtures *per pairwise* from clustering  $\theta$
- $\Rightarrow$  allows to model exponentially many trees



• **Prediction:** multi-class classifier on poselets responses



 $\Rightarrow$  prediction **before** pose inference: exact and efficient inference

### III. Predicting part position and rotation

- Part position relative to torso
- learning: cluster offsets into mixture components





– prediction: multi-class classifier



- Absolute part rotation:
- -learning: bin rotation to get mixture components
- prediction: similar to predicting part position









#### Top poselet









<sup>2</sup>Max Planck Institute for Intelligent Systems, Tübingen, Germany

# **Qualitative Results**





# **Quantitative Results**

- set parameters using validation set
- observer-centric annotations for testing [4]



Method

Andriluka et al., [1 predict pairwise predict unary predict pairwise-

Yang&Ramanan [9] Eichner&Ferrari [4]

# Image Parse (IP) [8] • 100 train, 205 test images

Method

ours ours + [7]

Andriluka et al. [1] Yang&Ramanan, [9 Duan et al., [3] Pishchulin et al., [7] Johnson&Everingha

#### Limitations

- prediction
- typical failure cases



#### References

- annotations. In ICCV'09.
- In In BMVC'12.
- ACCV'12.
- pose estimation. In *BMVC'10*.
- Annotation. In CVPR'11.

- CVPR'11.





MAX-PLANCK-GESELLSCHAFT

- Leeds Sports Poses (LSP) [5]
- 1,000 train, 1,000 test images

#### • Percentage Correct Parts (PCP) criterion

|        | Torso | Upper<br>leg | Lower<br>leg | Upper<br>arm | Fore<br>arm | Head | Total |
|--------|-------|--------------|--------------|--------------|-------------|------|-------|
| ]      | 80.9  | 67.1         | 60.7         | 46.5         | 26.4        | 74.9 | 55.7  |
|        | 85.8  | 74.0         | 66.1         | 51.7         | 30.9        | 78.0 | 60.9  |
|        | 86.1  | 73.3         | 65.8         | 52.8         | 31.0        | 76.0 | 60.8  |
| +unary | 87.5  | 75.7         | 68.0         | 54.2         | 33.9        | 78.1 | 62.9  |
| )]     | 84.1  | 69.5         | 65.6         | 52.5         | 35.9        | 77.1 | 60.8  |
| ·]     | 84.9  | 73.1         | 68.3         | 55.8         | 38.6        | 80.1 | 63.7  |

|                     | Torso                                | Upper<br>leg                         | Lower<br>leg                         | Upper<br>arm                                | Fore<br>arm                                 | Head                                        | Total                                       |
|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|                     | <b>92.2</b><br>90.7                  | 74.6<br><b>80.0</b>                  | 63.7<br><b>70.0</b>                  | 54.9<br>59.3                                | 39.8<br>37.1                                | 70.7<br>77.6                                | 62.9<br>66.1                                |
| 9]<br>7]<br>am, [6] | 86.3<br>82.9<br>85.6<br>88.8<br>87.6 | 66.3<br>69.0<br>71.7<br>77.3<br>74.7 | 60.0<br>63.9<br>65.6<br>67.1<br>67.1 | 54.6<br>55.1<br>57.1<br>53.7<br><b>67.3</b> | 35.6<br>35.4<br>36.6<br>36.1<br><b>45.8</b> | 72.7<br>77.6<br><b>80.4</b><br>73.7<br>76.8 | 59.2<br>60.7<br>62.8<br>63.1<br><b>67.4</b> |

#### – prediction: 62.9% PCP; oracle: 88.1% PCP (on LSP)





[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, 2009.

[2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose

[3] K. Duan, D. Batra, and D. Crandall. A multi-layer composite model for human pose estimation.

[4] M. Eichner and V. Ferrari. Appearance sharing for collective human pose estimation. In In

[5] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human

[6] S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate

[7] L. Pishchulin, A. Jain, M. Andriluka, T. Thormaehlen, and B. Schiele. Articulated people detection and pose estimation: Reshaping the future. In CVPR, 2012. [8] D. Ramanan. Learning to parse images of articulated objects. In *NIPS'06*.

[9] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In