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Abstract

We propose to formulate multi-target tracking as min-
imization of a continuous energy function. Other than a
number of recent approaches we focus on designing an en-
ergy function that represents the problem as faithfully as
possible, rather than one that is amenable to elegant opti-
mization. We then go on to construct a suitable optimization
scheme to find strong local minima of the proposed energy.
The scheme extends the conjugate gradient method with
periodic trans-dimensional jumps. These moves allow the
search to escape weak minima and explore a much larger
portion of the variable-dimensional search space, while still
always reducing the energy. To demonstrate the validity of
this approach we present an extensive quantitative evalua-
tion both on synthetic data and on six different real video
sequences. In both cases we achieve a significant perfor-
mance improvement over an extended Kalman filter base-
line as well as an ILP-based state-of-the-art tracker.

1. Introduction
Multi-target tracking is a now classical, but difficult task

in computer vision. Following multiple targets while ro-
bustly maintaining data association remains a largely open
problem. This is due to several aspects. A main difficulty
is the complexity of the state space one has to deal with:
the number of possible target trajectories over time is very
large (in fact infinite, if the location space is continuous),
and there is a trajectory for each of a discrete (but often un-
known) number of targets. By itself a huge state space need
not be a problem, but several physical constraints introduce
dependencies both between different locations of the same
target and between different targets. For instance, each ob-
ject’s linear and angular velocity must be physically plau-
sible, and the distance between any two objects cannot be-
come arbitrarily small. Since the discrete trajectories are not
independent of each other, maximizing their joint posterior
is in general NP-complete. To compound that, inter-object
occlusions cause appearance changes and missing evidence.

To resolve between-object interactions, several ap-

Figure 1. Initial values obtained by an EKF (top left) and an ILP-
based tracker (bottom left) and tracking results after global con-
tinuous optimization (right). Our method produces smooth, per-
sistent trajectories and significantly reduces the number of false
positives and lost targets.

proaches have recently been proposed which aim to include
them in the model and find a joint solution, as opposed to
tracking each target individually. This is usually achieved
by restricting the state space to a finite set of candidate lo-
cations, either by thresholding the observation likelihood or
by regularly discretizing the location space. The discretiza-
tion, together with certain simplifications of the physical
constraints, yields energy functions for which a (nearly)
global minimum can be found. Although this property is
certainly attractive, the price to pay is an energy function
which only roughly approximates the underlying posterior.

Here, we raise the question whether it is really advis-
able to find the global optimum of an inaccurate energy, or
whether it may be more appropriate to construct an energy
which faithfully represents the actual problem, despite the
fact that it is no longer convex (or at least has a convex re-
laxation). We propose an energy function over all target
locations and all frames of a time window, which covers
many important aspects of multi-target scenarios. To min-
imize the resulting energy, we devise a local optimization
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scheme which is able to explore many potentially interest-
ing regions of the search space without getting trapped in
the initial basin of attraction.

Our approach goes beyond the state-of-the-art in sev-
eral ways. (1) the targets’ locations are not bound to dis-
crete object detections or grid positions, meaning that each
target’s position is still defined in case of detector failure,
and that there is no grid aliasing; (2) there is no need to
unnaturally restrict the energy function. Arbitrary object
dynamics, appearance models, and even more involved ex-
tensions such as group behavior can be integrated into the
energy. While we cannot guarantee global optimality, our
experiments suggest that the tracking problem does have
enough structure that for reasonable energy functions one
can avoid weak local minima and find plausible modes of
the posterior; (3) the custom-tailored minimization proce-
dure is powerful, yet efficient: it is capable of changing the
dimensionality, thereby exploring a much larger portion of
the search space than standard gradient methods, but never-
theless stays focused on the promising regions and avoids
random search behavior.

The rest of the paper is structured as follows. After dis-
cussing related work in Section 2, we present our approach
in Section 3 by first defining the global energy function and
all its individual components in Section 3.2 followed by an
in-depth description of the minimization procedure in Sec-
tion 3.3. Finally, Section 4 presents quantitative evaluation
and experimental results of our approach.

2. Related Work
Object tracking has a long history in computer vision,

and a complete review lies beyond the scope of this paper.
In this section we concentrate on visual multi-target track-
ing, with a focus on methods based on optimization.

Compared to tracking a single target, multi-target track-
ing is a lot more complicated: the single-target case can in
most cases be solved by detecting the object in each frame –
possibly only within a local region around the predicted po-
sition – and “connecting the dots” to a consistent trajectory;
for multiple targets the problem is much more complex due
to the data association problem, and to interactions between
different targets (e.g. inter-object occlusion). An additional
difficulty is that in most scenarios the number of targets is
not known a-priori, and may in fact vary over time.

Early work mostly focused on recursive methods, where
the current state depends only on the previous one: initially
Kalman filtering, e.g. [5], and later particle filtering [8, 13,
16], which represents the posterior by a set of samples rather
than an analytic expression, and can thus better cope with
ambiguous, multi-modal distributions.

Recently, several non-recursive approaches have ap-
peared, which aim to formulate the problem such that a so-
lution can be found which is (in some cases globally) op-

timal over a longer time interval. One way to reduce the
immense solution space of tracking over extended time win-
dows is to commit in advance to a restricted set of possible
target locations [7, 10, 11, 20], which are usually found by
appearance-based object detection [6, 17] or by background
subtraction [14]. The tracker is forced to form trajectories
through these locations, without taking into account local-
ization uncertainty. A different approach, which has been
pursued in [2, 3, 4], discretizes the space of possible lo-
cations to a regular grid, which avoids early commitment
to detection results, but instead introduces discretization er-
rors.

The resulting optimization problems are either quadratic
integer programs [7, 11], in which case they are solved to
local optimality by custom heuristics based on recursive
search or graph cuts; or integer linear programs (ILP) [2, 4,
10], which are solved to near-global optimality through LP-
relaxation. An exception is [20], which solves a simplified
version of the problem without occlusions to global opti-
mality with a network flow algorithm, then greedily adds
occluded targets.

In the present work we investigate the question, whether
the restriction to a countably finite state space is really nec-
essary to perform multi-target tracking. It turns out that a
well-designed local optimization scheme in a continuous
state space can find better solutions, both in terms of vi-
sual quality and in terms of standard quantitative measures
of tracking accuracy and precision.

3. Model
The aim of our method is to find an optimal solution for

multi-target tracking over an entire video sequence. In other
words, each target needs to be assigned a unique trajectory
for the duration of the video, which matches the target’s
motion as closely as possible. To this end, we define a
global energy function which depends on all targets at all
frames within a temporal window, and thus represents the
existence, motion and interaction of all objects of interest
in the scene.

Tracking is performed in world coordinates, i.e. the im-
age evidence is projected onto the ground plane. Addition-
ally, the evidence is weighted with a height prior to reduce
false detections.

3.1. Notation

Before formally defining the energy function we briefly
introduce the notation: the state vector X consists of ground
plane coordinates of all targets at all times. The (x, y)-
location of target i at frame t is denoted xt

i. F and N in-
dicate the total number of frames and targets respectively.
Note, that in our formulation the position of each target is
always defined and considered when computing the energy,
even in case of occlusion.
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Figure 2. The effects of different components of the energy function. Top row shows a configuration with a higher, bottom row with a
lower value for each individual term. Darker gray-values indicate higher target likelihood.

3.2. Energy

There are many possibilities to define an energy (or
equivalently, likelihood) function which rewards more plau-
sible configurations and penalizes unreasonable ones. From
an optimization perspective it would certainly be benefi-
cial to have a convex function, which by definition only
has a single minimum and can be globally optimized in-
dependent of initial values. However, the crucial property
of an energy function is to approximate the true situation
sufficiently well, i.e. it should reflect all relevant behaviors
which occur in the data as accurately as possible. Other-
wise, one is faced with a situation where the minimum may
be easily attainable, but no longer corresponds to a useful
explanation of the real world. Unfortunately, more realistic
formulations of most vision problems lead to highly non-
convex energies with many local minima. We argue that in
the case of multi-object tracking it is more important to opti-
mize a less contrived, more “correct” energy, and thus waive
the requirement that the function be convex. The message
of the paper is that nevertheless there is hope – good energy
minima can be found.

Our energy function is made up of five terms: an obser-
vation term based on image data; three physically motivated
priors for object dynamics, collision avoidance and object
persistence; and a regularizer (simplicity prior) which tries
to keep the number of trajectories low:

E(X) = Eobs + αEdyn + βEexc + γEper + δEreg. (1)

In the following we describe each component of the energy
in more detail. Please refer to Figure 2 for an illustration.

3.2.1 Observation Model

We follow the tracking-by-detection school, i.e. the obser-
vation at every location is the likelihood of object presence
determined by an object detector. Detection has in the last
few years proved to be a reliable basis for tracking, and is
applicable in unconstrained environments and also with a
moving camera. Here, we detect pedestrians with a slid-
ing window approach using both HOG features [6] and his-

tograms of relative optic flow [18]. The energy is smaller
if the trajectories pass through regions of high pedestrian
likelihood in the individual frames:

Eobs(X) =

F∑
t=1

N∑
i=1

λ+

D(t)∑
g=1

−c
‖xt

i − dt
g‖2 + c

 . (2)

Here,D(t) is the number of detection score maxima (peaks)
in frame t, and dt

g is the location of peak g in frame t. The
value of λ penalizes existing targets which have no image
evidence. It is set to 0.05 for all our experiments.

Approximating the detector output with a sum of
Cauchy-like potentials is permissible, since the detection
scores by design exhibit smooth fall-off around the peaks.1

The advantage of the approximation is that one can compute
an analytical derivative of Eobs, which greatly accelerates
minimization.

It is straight forward to extend the observation model be-
yond detections and also capture targets’ appearances. To
this end, object colors or histograms in adjacent frames may
be compared (favoring smaller variations in color) to better
distinguish between individual targets and to avoid identity
switches. While in certain situations appearance may act as
a strong cue, in our experiments it did not provide enough
information to improve the overall performance, probably
due to similar clothing and frequent occlusion.

3.2.2 Dynamic Model

For the motion term we use a constant velocity model:

Edyn(X) =

F−2∑
t=1

N∑
i=1

∥∥vt
i − vt+1

i

∥∥2 , (3)

where vt
i = ẋt

i = xt+1
i −xt

i is the current velocity vector
of target i. Since maxima of the detector response are in
practice not perfectly aligned with targets’ locations, the

1This is the reason why object detectors have to perform non-maximum
suppression on the detector output.
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dynamic model can be interpreted as a kind of “intelli-
gent smoothing”, which takes into account the other energy
terms rather than blindly smooth the nodes of the trajectory
curve. It does however go beyond smoothing, for example it
helps to prevent identity switches between crossing targets
(since it favors straight paths).

Note that the dynamic model has so far been a weak
point of trackers based on ILP. These methods suffer from
aliasing of the discrete location grid, and either had to dis-
card the dynamic model altogether [4], or had to resort to
the weaker constant heading model [2].

3.2.3 Mutual Exclusion

The most obvious physical constraint is that two objects
cannot occupy the same space simultaneously. We include
this constraint into the energy function by defining a contin-
uous exclusion term:

Eexc(X) =

F∑
t=1

∑
i 6=j

s2g∥∥xt
i − xt

j

∥∥2 (4)

with the scale factor sg which is set to 35 cm for people
tracking. Configurations are penalized where two targets
come too close together, and the value goes to infinity when
they share one identical position. The term at the same time
enforces unique data association (since each detection can
only be assigned to one trajectory).

This formulation of collision avoidance takes into ac-
count the actual overlap of target volumes and can cor-
rectly handle two notoriously difficult problems of multi-
target tracking: on the one hand, overlap between targets
is checked at all times, even if both targets are occluded or
otherwise missed by the detector. On the other hand, if two
targets would collide due to inaccurate observations, the
continuous optimization can push them apart just as much
as needed, whereas methods based on grid discretizaton or
non-maximum suppression can only “connect the dots” and
would have to discard an entire trajectory.

3.2.4 Target Persistence

Another constraint one would in most cases like to integrate
into the energy function is the fact that targets cannot appear
or disappear within the tracking area (but nevertheless can
enter or leave the area). However, we prefer to impose only
a soft constraint, since otherwise one would have to explic-
itly model entry/exit locations (e.g. doors) and long term
occlusion. Hence the sigmoid penalty

Eper(X) =

N∑
i=1

∑
t∈{1,F}

1

1 + exp(1− q · b
(
xt
i)
) (5)

is used, where b(x1
i ) and b(xF

i ) are the distances of the start,
respectively end points of trajectory i to the border of the

E(X)

X

(a) (b)

(c) (d)

E(X)

X

Figure 3. A simple example to illustrate the non-convexity of the
continuous tracking formulation. To get from the light blue path
(weaker optimum) to the dark blue one (stronger optimum) one has
to overcome a ridge of high energy. (a-b) Keeping Edyn low incurs
high penalties in Eobs as one moves away from the observations.
(c-d) Keeping Eobs low incurs high penalties in Edyn as the paths
gets distorted to fit the observations. With a reasonably peaked
observation likelihood intermediate cases are even worse.

tracking area. This term enforces merging of existing tra-
jectories through occlusions because an abrupt interruption
of a trajectory is penalized.

3.2.5 Regularization

The regularization drives the minimization towards a sim-
pler explanation of the data, i.e. a model with fewer targets
and longer trajectories:

Ereg(X) = N +

N∑
i=1

1

F (i)
, (6)

where F (i) is the temporal length of trajectory i in frames.
The regularization balances the model’s complexity against
its fitting error, and discourages overfitting, fragmentation
of trajectories, and spurious identity changes.

3.3. Energy Minimization

The proposed energy is clearly not convex. In fact, a re-
alistic energy, which describes the true situation well, is un-
likely to be convex: it is easy to construct examples, which
have two equally likely minima separated by a ridge of high
energy, cf . Fig. 3 for an illustration. The reason for this
behavior is the high-order dependence between variables
caused by physical constraints.

To mitigate the problem we introduce a number of jump
moves which change the dimension of the current state
Xcurr, thereby jumping to a different region of the search
space, while still decreasing the energy, cf . Fig. 4. In the ex-
ample it is possible to remove a weak trajectory entirely and
initialize another one, while always lowering the energy.
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start
remove splitadd merge shrink grow

Figure 4. The proposed jump moves give the continuous optimization a higher degree of flexibility allowing a variable number of targets.
Even a poor initial configuration can be used to recover the true trajectories. The ground truth is rendered in gray.

To minimize the energy function (1) locally, we use the
standard conjugate gradient method. Every n iterations a
jump move is executed (unless it would increase the en-
ergy). Based on our experience, the order of the jump
moves does not influence the final result because the op-
timization is always able to perform an inverse move to find
the way towards a lower energy. The jumps give the op-
timization a high degree of flexibility – the initial solution
need not even have the correct number of targets.

The data-driven strategy to change the dimension of the
state vector is reminiscent of reversible jump Markov Chain
Monte Carlo methods [9]. However, in contrast to Monte
Carlo sampling, our method is deterministic: it exploits the
advantages of gradient descent over sampling within one
mode, and performs jumps according to a prescribed sched-
ule and only if they decrease the energy.

Growing and Shrinking. Each trajectory can be ex-
tended in space-time using standard extrapolation. In con-
trast, paths can be shortened if not enough image evidence
is available. These two steps help to pick up targets missed
due to tracker failure and weed out false positives.

Splitting and Merging. To eliminate identity switches,
trajectories can be split and merged. Splitting is imple-
mented by breaking paths into two if the split yields lower
energy. Merging is executed if two paths can be connected
into one with lower energy, preserving physically plausible
target motion. Especially the latter is a powerful move to
overcome temporary tracker failure due to weak evidence
or occlusion.

Adding and Removing. New trajectories can be gen-
erated at locations with strong detections, which are not yet
assigned to any trajectory. The newly inserted tracks are
started conservatively with three consecutive frames, but
can grow or merge with existing ones at a later iteration.
An entire trajectory is removed from the scene if its total
energy is positive (meaning that its presence reduces the
overall likelihood of the current state, rather than increasing
it). Adding again helps to clean up detector failure, whereas
removal discards trajectories which have been pushed to a

state with little evidence, unreasonable dynamics, and/or
overlap with other trajectories.

Initialization. Like any non-convex optimization, the
result depends on the initial value from which the iteration
is started. However, the described “intelligent exploration
strategy” greatly weakens this dependency compared to a
pure gradient method. By allowing jumps to low-energy
regions of the search space, even if they are far away from
the current state, the attraction to local minima is reduced:
the weaker a minimum is, the more likely it gets to find a
jump out of its basin of attraction, which lowers the energy.

Empirically, even the trivial initialization with no tar-
gets at all works reasonably well, however it takes many
iterations to converge. Instead, we propose to rather use
the output of an arbitrary simpler tracker as a more qual-
ified initial value. In our experiments we have used both
per-target Extended Kalman filters (EKFs), and a globally
optimal discrete tracker based on integer linear program-
ming [2]. In both cases, the trackers are run with different
parameters to generate a set of starting values. For both ini-
tializations the proposed minimization scheme consistently
manages to substantially reduce the energy, and in our ex-
periments has always improved tracking accuracy, cf . Ta-
bles 1 and 2. Usually different starting values converge to
similar (albeit not identical) solutions, see Fig. 5.

Figure 5 shows the convergence behavior for several op-
timization runs on the same dataset but with varying start-
ing points. Note that a decrease in energy corresponds very
well to better tracking performance – an indication that the
energy function indeed is a good representation of the true
objective. Figure 1 shows a qualitative comparison between
initialization (left) and the result after continuous global op-
timization (right) for two initial values obtained with differ-
ent techniques. The proposed energy minimization scheme
is able to successfully recover persistent trajectories while
not suffering from spatial discretization.

4. Experiments
In section 3 we have proposed an energy function which

has been conceived with the primary goal to accurately re-
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Figure 5. The proposed energy (solid) correlates well with tracking
performance w.r.t. ground truth (dashed). Each color represents
a different initialization. Energy values have been negated and
scaled to better fit the figure.

flect the actual behavior of multiple interacting targets, cf .
Fig. 5. As a consequence, the energy minimization can only
be solved to local optimality, and there are no theoretical
guarantees about the goodness of the solution. Our claim is
that minimizing this function will nevertheless on average
yield higher tracking accuracy. To empirically support this
claim we have performed an extensive experimental evalu-
ation on various different datasets.

Synthetic dataset. Since it is notoriously difficult to get
accurate ground truth for tracking, we first validate our
method on synthetic data, for which perfect ground truth is
available to quantitatively evaluate the tracking. To emulate
realistic trajectories, the dataset is constructed by combin-
ing 645 short snippets randomly sampled from real anno-
tated data. To simulate detector failure, 15% of all detec-
tions were removed. In our simulations, the minimization
in all cases lead to a significant improvement in tracking
accuracy compared to the initialization. In many cases the
ideal result was found, yielding 100% accuracy. In particu-
lar, continuous optimization also significantly improved the
output of a state-of-the-art discrete tracker based on ILP [2].
Both the ILP-tracker and the subsequent continuous opti-
mization were fed the identical detector evidence, in order
to guarantee that the comparison is not biased by the im-
plementation of the detector. In all experiments with syn-
thetic data the multi-object tracking precision (see below)
was above 95%. This shows a direct benefit of the continu-
ous solution as opposed to a discrete one, which hardly ever
exceeds 70% as a consequence of discretization errors.

Real data benchmarks. We have done experiments on
four widely used real world datasets as well as on two of

our own sequences. All data is recorded outdoors in an un-
constrained environment and exhibits strong variability in
video quality, image resolution and frame rate.

For multi-view tracking we use the sequences terrace1
and terrace2 [3], each containing 2000 frames recorded
from four different viewpoints.2 The videos show up to 6
people walking freely around a small area and feature a lot
of occlusions and significant scale changes. Sequence S2L1
is taken from the VS-PETS 2009 benchmark.3 Only the first
viewpoint is used. The video is filmed with ≈ 7 fps from
an elevated viewpoint and is 795 frames long, and shows up
to 8 people. The TUD-Stadtmitte dataset [1] contains only
179 frames but is very challenging due to the extremely low
camera angle – which makes 3D position estimation very
difficult – and heavy inter-object occlusion.4 Finally, we
present experiments on a new dataset, which we plan to re-
lease in near future. The ped1 sequence, cf . Fig. 1 bottom,
is 1400 frames long and shows pedestrians, bicycles and a
wheel chair from two viewpoints in a busy pedestrian street.
In our experiments we treat each viewpoint separately.

We are able to run the optimization with ≈ 1 sec/frame
on entire sequences in all datasets without the need to resort
to sliding temporal windows.

4.1. Quantitative Evaluation

There is no single established protocol how to measure
multi-object tracking performance. We follow the current
best practice and calculate the CLEAR-metrics introduced
by [15]. All figures are computed in 3D with a hit/miss
threshold of 1 meter. The Multiple Object Tracking Ac-
curacy (MOTA) takes into account false positives, missed
targets and identity switches. The Multiple Object Tracking
Precision (MOTP) is simply the average distance between
true and estimated targets. Furthermore, we also compute
the metrics proposed in [12], which counts the number of
mostly tracked (MT), partially tracked (PT) and mostly lost
(ML) trajectories as well as the number of track fragmenta-
tions (FM) and identity switches (IDS).

4.2. Example Results

Tables 1 and 2 present quantitative results of our ap-
proach on all datasets. As initializations we use the solu-
tions delivered by a recent implementation of the classi-
cal EKF [19], respectively by the already mentioned ILP
tracker. The numbers given are the performance metrics for
the initial values (which are by themselves state-of-the-art
multi-target trackers and thus serve as baseline), and for the
final values found with our proposed formulation. Addition-
ally, we also show the differences between initial and final
results. The average is taken over nine different starting

2http://cvlab.epfl.ch/data/pom
3http://www.cvg.rdg.ac.uk/PETS2009
4http://www.mis.tu-darmstadt.de/node/428
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points, generated through slight variations of the respective
algorithm’s parameters. As expected, our proposed method
consistently reduces tracking errors and thus improves the
average tracking performance in all cases. The slight in-
crease of track fragmentations and ID-switches can be ex-
plained by the larger number of successfully tracked targets.

Table 3 presents quantitative results for tracking config-
urations with the lowest energy for each dataset. Figure 6
shows some example results in three different sequences.
Targets moving within a specified tracking area (marked
with a dotted line) are successfully tracked over time, with
new targets initialized automatically.

The weighting parameters α through δ have been deter-
mined empirically and are set to (0.05, 1, 0.5, 0.25) in all
our experiments.

Sequence MOTA MOTP MT PT ML FM IDS
terrace1 87.2 % 79.3 % 6 2 1 10 17
terrace2 88.1 % 78.1 % 7 1 1 11 11
TUD 60.5 % 65.8 % 6 3 0 4 7
PETS 81.4 % 76.1 % 19 4 0 21 15
ped1-c1 63.1 % 80.3 % 15 7 1 4 4
ped1-c2 48.0 % 75.7 % 10 10 2 19 4

Table 3. Quantitative results of our method. For each sequence, the
optimization was initialized with multiple EKF and/or ILP trackers
with different parameters. The displayed results correspond to the
optimum with the lowest energy.

5. Conclusion and Future Work

We have presented an algorithm for jointly tracking a
varying number of targets with continuous optimization.
Contrary to a recent trend we have shown that convexity5

is, in the case of tracking, not necessarily the primary re-
quirement for a good cost function: to achieve meaningful
(although local) energy minima it is not necessary to limit
the state space, as most multi-target trackers implicitly do
– either by per-frame non-maxima suppression or by dis-
cretizing locations to a coarse grid. Through the minimiza-
tion of a continuous global energy function, using gradient
descent together with appropriate trans-dimensional jump
moves, we improve over state-of-the-art multi-target track-
ing techniques on many public datasets.

In future work we plan to incorporate more sophisticated
appearance and dynamic models, and to handle visibility
more explicitly. Although our method tracks remarkably
well even through occlusions, we believe that explicit oc-
clusion reasoning will help to handle more difficult target
interactions with missing detections, crowded scenes and
long-term occlusions. Furthermore we hope to be able to

5Respectively submodularity for discrete functions.

reach real-time performance with an even faster optimiza-
tion based on multi-grid search, as well as a more efficient
implementation. This would make the method applicable
to real-time applications, by repeatedly solving for only the
past frames.
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Sequence MOTA [%] MOTP [%] MT PT ML FM IDS

initial final diff initial final diff init fin diff init fin diff init fin diff initial final diff initial final diff
TUD 53.3 60.9 +7.6 57.4 65.9 +8.4 5 6 +1 4 3 -1 0 0 +0 3.1 4.4 +1.3 3.8 6.0 +2.2
PETS 64.7 78.7 +14.0 75.4 76.7 +1.4 9 16 +7 14 6 -8 0 0 -0 25.2 19.2 -6.0 17.7 14.2 -3.4
ped1-c1 32.3 49.7 +17.4 78.5 78.1 -0.4 1 13 +12 14 5 -9 8 4 -3 1.2 3.6 +2.3 1.2 2.7 +1.4
ped1-c2 29.0 37.7 +8.7 71.8 77.1 +5.3 0 7 +7 17 12 -6 5 4 -1 9.2 16.3 +7.1 5.9 2.9 -3.0
mean 44.8 56.7 +11.9 70.8 74.5 +3.7 4 11 +7 12 6 -6 3 2 -1 9.7 10.9 +1.2 7.1 6.4 -0.7

Table 1. Quantitative results of our method. For each metric we report three values: the starting point obtained with an EKF-tracker, our
result after energy minimization and their difference (the averages for MT, PT and ML have been rounded for better readability). The
tracking accuracy, respectively the number of mostly tracked targets, consistently improve for all datasets. Tracking precision remains the
same or improves slightly. Our EKF implementation only supports monocular video, hence, the datasets terrace1 and terrace2 could not
be tested.

Sequence MOTA [%] MOTP [%] MT PT ML FM IDS

initial final diff initial final diff init fin diff init fin diff init fin diff initial final diff initial final diff
terrace1 82.8 84.9 +2.1 74.3 79.6 +5.3 7 7 -0 1 1 +0 1 1 -0 10.4 10.4 +0.0 14.4 19.6 +5.1
terrace2 75.1 83.8 +8.7 71.7 76.7 +5.1 9 7 -2 0 1 +1 0 1 +1 7.8 10.6 +2.8 11.7 17.1 +5.4
TUD 10.2 41.9 +31.8 45.3 61.7 +16.5 0 3 +2 2 6 +5 7 0 -7 1.0 5.8 +4.8 0.8 6.0 +5.2
PETS 26.0 42.8 +16.7 67.3 74.7 +7.4 1 6 +5 14 11 -3 8 6 -2 14.3 17.6 +3.2 17.2 14.0 -3.2
ped1-c1 43.8 58.9 +15.1 72.3 79.9 +7.6 9 14 +5 6 6 -0 8 3 -5 3.0 3.5 +0.5 3.8 2.5 -1.2
ped1-c2 29.1 33.1 +4.0 64.2 72.1 +7.9 0 7 +7 19 14 -5 3 2 -2 9.4 10.5 +1.1 6.6 7.8 +1.1
mean 44.5 57.6 +13.1 65.8 74.1 +8.3 4 7 +3 7 7 0 5 2 -3 7.7 9.7 +2.0 9.1 11.2 +2.1

Table 2. Quantitative results of our method using the discrete ILP-tracker [2] as initialization. Continuous optimization consistently
improves tracking accuracy and tracking precision for all tested sequences.

Figure 6. Tracking results obtained with our algorithm. Top to bottom: datasets terrace1, PETS-L2S1 and TUD-Stadtmitte with marked
tracking area (dotted). Four sample frames are displayed for each dataset from left to right. Trajectories are visualized in bold (past) and
thin (future) lines. The identities of tracked targets are color coded.
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