

Goal

• Detect and track *all* the people in the crowded street scenes

Motivation

- Detection and tracking failures are related to frequent and long-term *person-person occlusions* Exploit person-person occlusion patterns
- Person detectors used for tracking are typically trained *independently* from the tracker
- → Train detectors with trackers in the loop, focusing on the most common tracker failures

Contribution

- A novel structural loss-based training approach for joint person detectors
- Joint person detectors are trained in a *tracking*aware fashion:
- Design occlusion patterns
- Mine occlusion patterns from tracking results
- Surpass state-of-the-art methods on several particularly challenging datasets.

Reference

[1]. S. Tang, M. Andriluka, B. Schiele Detection and tracking of occluded people. BMVC 2012. IJCV 2013. [2]. B. Pepik, M. Stark, P. Gehler, B. Schiele Teaching 3d geometry to deformable part models. CVPR 2012. [3]. A. Andriyenko, K. Schindler Multi-target tracking by continuous optimization energy minimization. CVPR [4]. M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, L. Van Gool Online multiperson tracking-by-detection from a single uncalibrated camera. PAMI 2011 [5]. G. Shu, A. Dehghan, O. Oreifej, E. Hand, M. Shah Part-based multiple-person tracking with partial occlusion handling. CVPR 2012. [6]. A. R. Zamir, A. Dehghan, M. Shah GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. ECCV 2012.

• Given training images, learning τne parameters of the joint detection model is formulated as the optimization problem [2]:

$$\min_{\substack{\beta,\xi \ge 0 \\ h}} \frac{1}{2} \|\beta\|^2 + \frac{C}{N} \sum_{\substack{n=1 \\ n=1}}^{N} \xi_i$$
sb.t.
$$\max_{\substack{h}} \langle \beta, \phi(I_i, y_i, h) \rangle - \max_{\hat{h}} \langle \beta, \phi(I_i, \hat{y}, \hat{h}) \rangle$$

$$\ge \Delta(y_i, \hat{y}) - \xi_i, \quad \forall \hat{y} \in \mathcal{Y}$$

Loss functions

• The detection with larger overlap with the ground truth bounding box has higher score than the detection with lower overlap with the ground truth bounding box

$$\Delta_{\rm voc}(y,\hat{y}) = \begin{cases} 0, & \text{if} \\ 1 - [y^l = \hat{y}^l] \frac{A(y^b \cap \hat{y}^b)}{A(y^b \cup \hat{y}^b)}, & \text{o} \end{cases}$$

 $\mathbf{f} \, y^l = \hat{y}^l = -1$ therwise,

• Teach the model to distinguish a single person and a highly occluded person pair

1 0

single person with $\Delta_{\text{VOC+DT}}$

occlus

 $\Delta_{\text{VOC+DT}}(y,\hat{y}) = (1-\alpha)\Delta_{\text{VOC}}(y,\hat{y}) + \alpha \left[y^{dt} \neq \hat{y}^{dt}\right]$

Experimental result

The same experiment setup with [1]

1.0				
0.9				
0.8	^			
0.7				
=0.6				
¦¦;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;				
<u> </u>				
0.3	— Single person detector (DPM) — Barinova et al. CVPB'10			
0.2	- Tang et	al. BMVC'	2012	-
0.1	 Joint det Joint det 	ector (no ector	det. type)	
$0.8^{-1.00}$	0.4 0.5	0.6 0.7	0.8 0.9	 1.0
1-precision				
ethod	Rcll	Prcsn	MOTA	MOTP
ngle (DPM)	78.0	94.1	72.1 %	78.5 %
ing et al. [1]	79.9	96.5	75.6 %	79.1 %
int det. (no det. type)) 81.9	93.2	75.1 %	79.1 %
int detector	82.7	93.9	76.0 %	78.6 %

tors for Tracking in Crowded Scenes

on Milan² Konrad Schindler³ Stefan Roth² Bernt Schiele¹

- ²TU Darmstadt
 - ³ETH Zürich

Learn people detectors for tracking Design occlusion patterns

• Manually design regular occlusion combinations that therefore most relevant for tracking

Experiments

