

TECHNISCHE UNIVERSITÄT DARMSTADT

Objective

Pixel-wise labeling of object and scene classes in a Dynamic Conditional Random Field framework[1]

- Exploit powerful object detector in CRF framework to improve pixel-wise labeling of object classes
- Leverage temporal information
- Joint inference for objects and scene
- New Dataset with pixel-wise labels for highly dynamic scenes

Plain CRF formulation

 $\log(P_{pCRF}(\mathbf{y}^t | \mathbf{x}^t, N_1, \Theta)) = \sum_i \Phi(y_i^t, \mathbf{x}^t; \Theta_{\Phi}) + \sum_{(i,j) \in N_1} \Psi(y_i^t, y_j^t, \mathbf{x}^t; \Theta_{\Psi}) - \log(Z^t)$

- Seven class labels: Sky, Road, Lane marking, Trees & bushes, Grass, Building, Void
- Joint boosting[2] to obtain unary potentials Softmax transform to obtain pseudo-probability:

$$\Phi(y_i^t = k, \mathbf{x}^t; \Theta_{\Phi}) = \log \frac{\exp H(k, \mathbf{f}(x_i^t); \Theta_{\Phi})}{\sum_c \exp H(c, \mathbf{f}(x_i^t); \Theta_{\Phi})}$$

• Pairwise potentials with logistic classifiers (learnt with gradient descent) [3]

$$\Psi(y_i^t, y_j^t, \mathbf{x}^t; \Theta_{\Psi}) = \sum_{(k,l)\in C} \mathbf{w}^T \begin{pmatrix} 1 \\ \mathbf{d}_{ij}^t \end{pmatrix} \delta(y_i^t = k) \delta(y_j^t = l)$$

- Piecewise training of unary and pairwise potentials
- Distinguish east-west and north-south pairwise relations
- No dynamic information encoded
- Object classes suffer from too short range interactions

A Dynamic Conditional Random Field Model for Joint Labeling of Object and Scene Classes

Christian Wojek, Bernt Schiele Computer Science Department, TU Darmstadt, Germany {wojek, schiele}@cs.tu-darmstadt.de

• Platt's method to obtain pseudo-probability for unary object potential:

 $\Omega(o_n^t, \mathbf{x}^t; \Theta_{\Omega}) = \log \frac{1}{1 + \exp(s_1 \cdot (\mathbf{v}^T \cdot \mathbf{g}(\{\mathbf{x}^t\}_{o_n^t}) + b) + s_2))}$

Dynamic CRF formulation

- Independently model scene and object motion
- Extended Kalman filter in 3D coordinate system for object classes

 $\log(P_{tCRF}(\mathbf{y}^{t}, \mathbf{o}^{t} | \mathbf{x}^{t}, \Theta)) = \log(P_{pCRF}(\mathbf{y}^{t} | \mathbf{x}^{t}, N_{2}, \Theta)) +$ $\sum \kappa^{t}(o_{n}^{t}, \mathbf{o}^{t-1}, \mathbf{x}^{t}; \Theta_{\kappa}) + \sum \Lambda(y_{i}^{t}, y_{j}^{t}, o_{n}^{t}, \mathbf{x}^{t}; \Theta_{\Lambda})$

• For scene classes propagate CRF posterior as prior to next time step

> $\Delta^{t}(y_{i}^{t}, \mathbf{y}^{t-1}; \Theta_{\Delta^{t}}) = \log(P_{tCRF}(y_{O^{-1}(i)}^{t-1} | \Theta))$ $\log(P_{dCRF}(\mathbf{y}^{t}, \mathbf{o}^{t}, \mathbf{x}^{t} | \mathbf{y}^{t-1}, \mathbf{o}^{t-1}, \Theta)) = \log(P_{tCRF}(\mathbf{y}^{t}, \mathbf{o}^{t} | \mathbf{x}^{t}, \Theta)) +$ $\sum \Delta^t(y_i^t, \mathbf{y}^{t-1}; \Theta_{\Delta^t})$

- Mean and Variance of 16 first Walsh-Hadamard transform coefficients from CIE L, a and b channel, extracted at multiple scales (8, 16 and 32 pixel windows)
- -Node coordinates in regular 2D lattice

Acknowledgements: This work has been funded, in part, by Continental Teves AG. Further we thank Joris Mooij for publicly releasing libDAI and BAE Systems for the Sowerby Dataset.

Experiments on TUD Dynamic Scenes Dataset

- New dataset containing dynamic scenes
- 176 sequences of 11 successive frames (88 sequences for training and 88 for testing)
- -Last frame of each sequence with pixel-wise labels, bounding box labels for object class *car*
- Publicly available from
- http://www.mis.informatik.tu-darmstadt.de
- Unary classification performance

		Normalization							
		C	n	off					
		multi-scale	single-scale	multi-scale	single-scale				
ocation	on	82.2%	81.1%	79.7%	79.7%				
	off	69.1%	64.1%	62.3%	62.3%				

- For unary and interaction potentials:
- Gray world normalization of input images

• HOG features [4] for object node unary potentials

Experiments on Sowerby Dataset

• Pixel-wise evaluation of object class *car*

	No objects			With object layer			Including object dynamics		
	Recall	Precision	Acc.	Recall	Precision	Acc.	Recall	Precision	Acc.
CRF	50.1%	57.7%	88.3%	62.9%	52.3%	88.6%	70.4%	57.8%	88.7%
dyn. CRF	25.5%	44.8%	86.5%	75.7%	50.8%	87.1%	78.0%	51.0%	88.1%

• Confusion matrix for all classes

True class	Fraction Fraction	Sky	Road	Lane marking	Trees & bushes	Grass	Building	Void	Car
Sky	10.4%	91.0	0.0	0.0	7.7	0.5	0.4	0.3	0.1
Road	42.1%	0.0	95.7	1.0	0.3	1.1	0.1	0.5	1.3
Lane marking	1.9%	0.0	36.3	56.4	0.8	2.9	0.2	1.8	1.6
Trees & bushes	29.2%	1.5	0.2	0.0	91.5	5.0	0.2	1.1	0.4
Grass	12.1%	0.4	5.7	0.5	13.4	75.3	0.3	3.5	0.9
Building	0.3%	1.6	0.2	0.1	37.8	4.4	48.4	6.3	1.2
Void	2.7%	6.4	15.9	4.1	27.7	29.1	1.4	10.6	4.8
Car	1.3%	0.3	3.9	0.2	8.2	4.9	2.1	2.4	78.0

References

- 2003.
- classification. In *ICCV*, 2005.
- 2005
- fields for image labeling. In CVPR, 2004.
- In *ECCV*, 2006.

• Sample segmentations and detections

[1] Andrew McCallum, Khashayar Rohanimanesh, and Charles Sutton. Dynamic conditional random fields for jointly labeling multiple sequences. In NIPS* Workshop on Syntax, Semantics,

[2] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing features: Efficient boosting procedures for multiclass object detection. In CVPR, 2004.

[3] Sanjiv Kumar and Martial Hebert. A hierarchical field framework for unified context-based

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR,

[5] Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán. Multiscale conditional random

[6] Jamie Shotton, John Winn, Carsten Rother, , and Antonio Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation.