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Motivation

" How much private information can be exposed
from social photos via computer vision?

" How robust are the state of the art person
recognisers to head blur?

= Which actions can users take to protect their
privacy?

Challenges in Analysis

Who is this person inside an album?

Conclusion in a Nutshell

1. State of the art person recognisers are robust to
common identity protection measures.

2. Further performance boost from 1) adapting
system to obfuscation patterns and 2) jointly
reasoning across photos.

3. Even in the most protective scenario (no

identity tag in the same event photos, all heads
obfuscated), achieve 12x above naive guess.

" Can only lower bound on the performance of the
best corporate systems, due to a limited access to

the large scale private user databases.

" How to simulate users with varying degrees of
privacy sensitivity?

" How to aggregate personal information spread
across multiple photos?

Setup for Analysis

" Person recognition in social media.

" Closed world assumption: Recognise from a finite g;gez
set of identities (200~600). mages.

" GT head boxes are given on all the instances.

" Fuse information from non-tagged instances in the +
same album and < 10 tagged instances per identity. Other

" Consider multiple identity protection scenarios. tagged

» Dataset: Person In Photo Albums (PIPA) [1] people.

Identity Protection Scenarios

Number of tagged photos & amount of head obfuscation
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Black ﬁ||in White ﬁ||_in = Within events: Similar clothing.
" Across events: Changed clothing.
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Faceless Person Recognition
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Unary: single person recogniser. ¢9

" |dentity probabilities for a single person.

= State of the art CNN full-body recogniser [2].
" Fine-tuned for obfuscation patterns.

Pairwise: person pair matcher. @55
co e " Match probabilities for person pairs.
" Siamese network trained for matching.

" Fine-tuned for obfuscation patterns.

Quantitative Results

" Number of tagged photos:

= 1.25 tags / person =2 still far
unary better than naive baseline.
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" Take-away: Make sure no
I tagged heads exist for the
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Qualitative Results
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