

Faceless Person Recognition; Privacy Implications in Social Media

Seong Joon Oh, Rodrigo Benenson, Mario Fritz, Bernt Schiele

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Motivation

- How much private information can be exposed from social photos via computer vision?
- How robust are the state of the art person recognisers to head blur?
- Which actions can users take to protect their privacy?

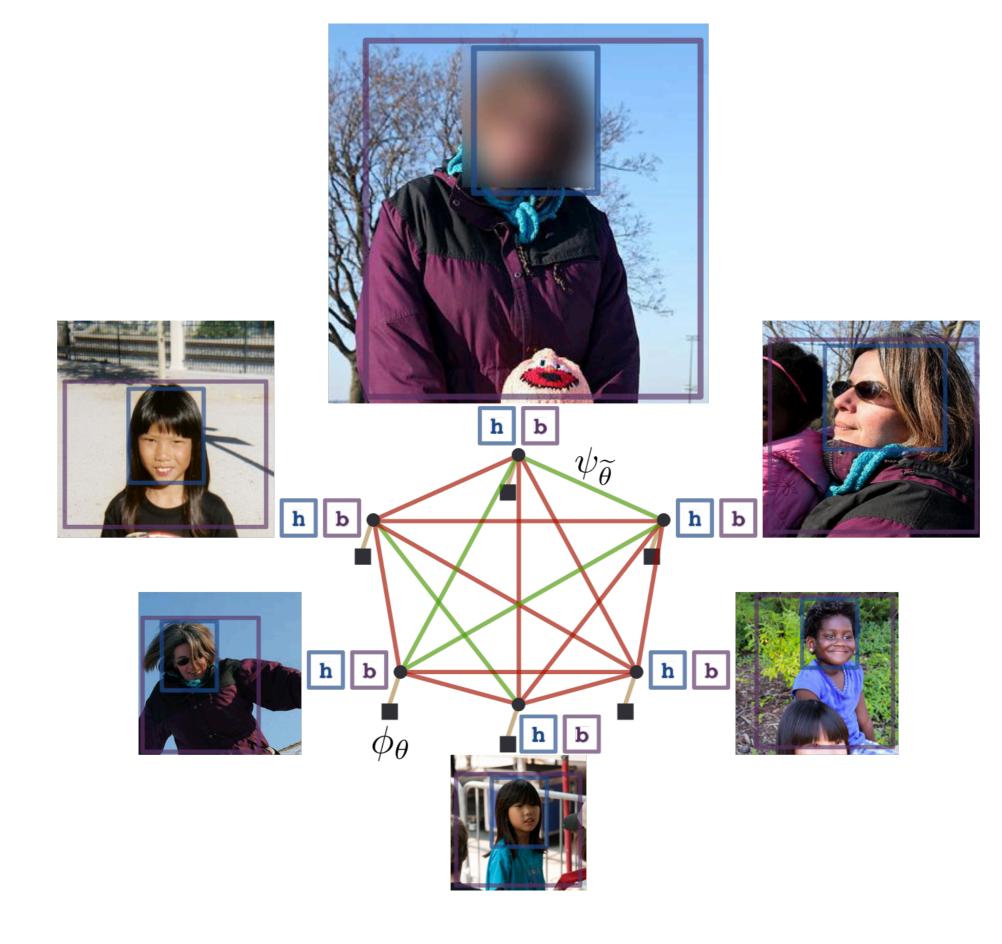
Challenges in Analysis

- Can only lower bound on the performance of the best corporate systems, due to a limited access to the large scale private user databases.
- How to simulate users with varying degrees of privacy sensitivity?
- How to aggregate personal information spread across multiple photos?

Setup for Analysis

- Person recognition in social media.
- Closed world assumption: Recognise from a finite set of identities (200 \sim 600).
- GT head boxes are given on all the instances.
- Fuse information from non-tagged instances in the same album and < 10 tagged instances per identity.
- Consider multiple identity protection scenarios.
- Dataset: Person In Photo Albums (PIPA) [1]

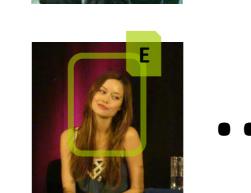
Who is this person inside an album?



... given some tagged images?

tagged

people.



Conclusion in a Nutshell

- 1. State of the art person recognisers are robust to common identity protection measures.
- 2. Further performance boost from 1) adapting system to obfuscation patterns and 2) jointly reasoning across photos.
- 3. Even in the most protective scenario (no identity tag in the same event photos, all heads obfuscated), achieve 12x above naïve guess.

Faceless Person Recognition

 $\underset{Y}{\operatorname{arg\,max}} \; \frac{1}{|V|} \sum_{i \in V} \phi_{\theta}(Y_i | X_i) + \frac{\alpha}{|E|} \sum_{(i,j) \in E} 1_{[Y_i = Y_j]} \psi_{\widetilde{\theta}}(X_i, X_j)$

Unary: single person recogniser. ψ_{θ}

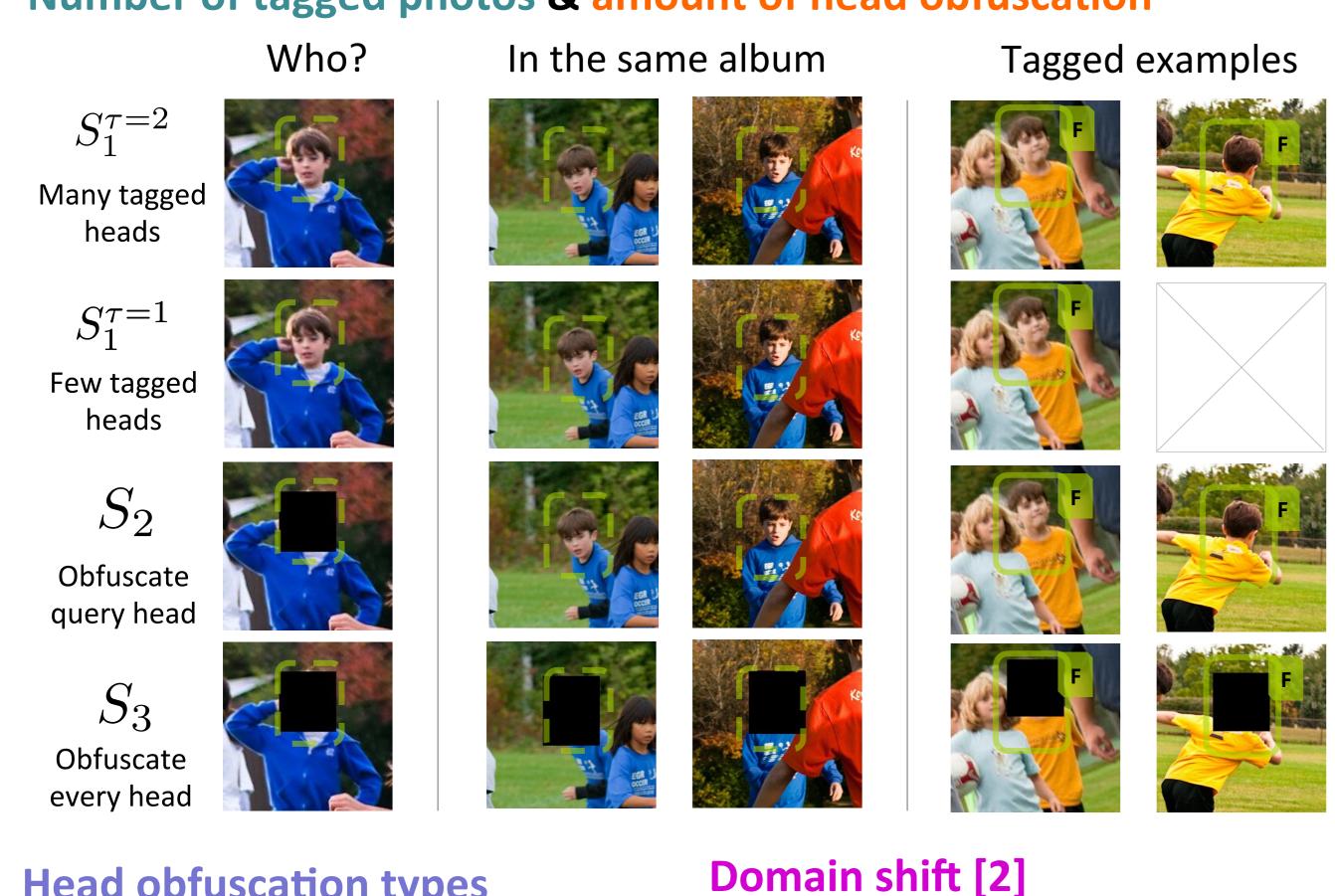
- Identity probabilities for a single person.
- State of the art CNN full-body recogniser [2].
- Fine-tuned for obfuscation patterns.

Pairwise: person pair matcher. $\psi_{\widetilde{A}}$

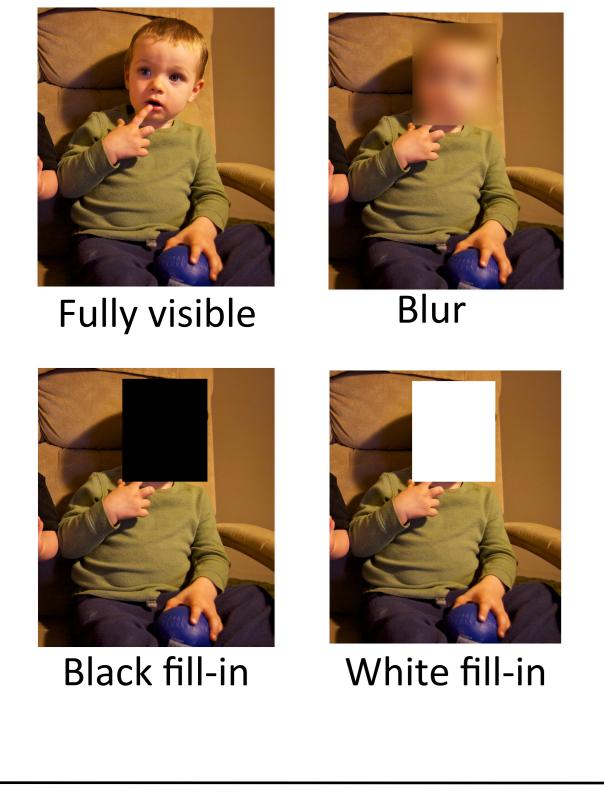
- Match probabilities for person pairs.
- Siamese network trained for matching.
- Fine-tuned for obfuscation patterns.

Identity Protection Scenarios

Number of tagged photos & amount of head obfuscation



Head obfuscation types



Acknowledgements

CRF 1223).

This research was supported by the

German Research Foundation (DFG

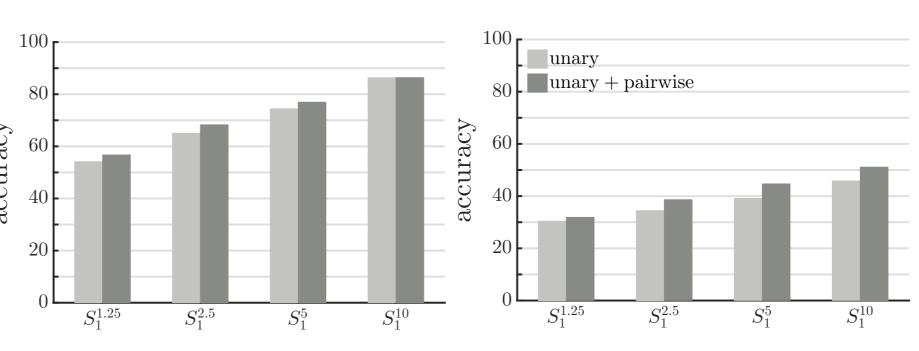
Within events: Similar clothing. Across events: Changed clothing.

References

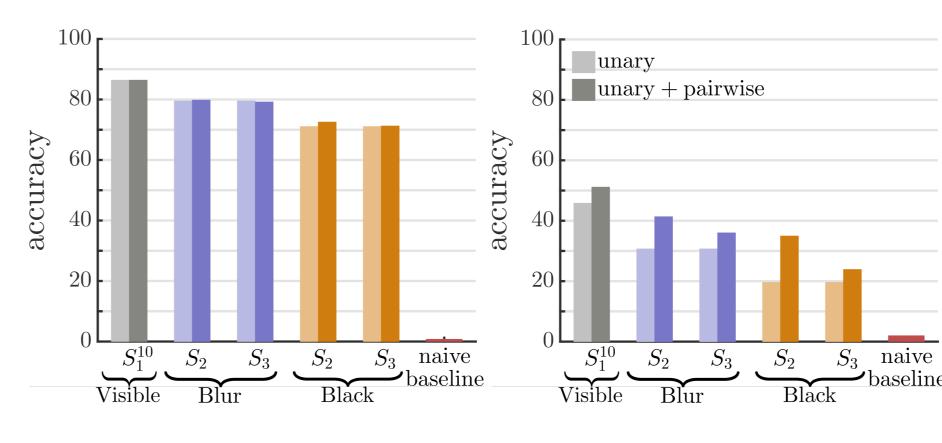
[1] Zhang et al. Beyond frontal faces: improving person recognition using multiple cues. CVPR'15. [2] Oh et al. Person Recognition in Personal Photo Collections. ICCV'15.

Quantitative Results

Identification accuracy versus tag rate.



... versus obfuscation type & amount.



Number of tagged photos:

■ 1.25 tags / person → still far better than naïve baseline.

Amount of head obfuscation:

- Within events: ineffective way of protection.
- Across events: most effective if all heads are blacked out.
- Head obfuscation types:
- Black \approx White >Blur >Visible.
- Domain shift:
- Recognition system struggles more across events.
- Take-away: Make sure no tagged heads exist for the event where you want protection.

Qualitative Results

