

Goal

• Detection and pose estimation of highly articulated people in sport scenes

- Address the lack-of-training-data problem by automatically generating novel training samples
- Improve pose estimation by leveraging the strong evidence from people detector

Contributions

- Novel method for automatic generation of multiple training examples from a single image
- \Rightarrow training from generated and real data improves the performance over real data alone

• Propose a joint model: integrate the evidence from DPM [4] into the Pictorial Structures (PS) [3, 5]

- Define a new challenge: joint detection and pose estimation of multiple people "in the wild"
- \Rightarrow Data and pose estimation software available https://www.d2.mpi-inf.mpg.de/articulated-data

Articulated People Detection and Pose Estimation: Reshaping the Future

Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka, Thorsten Thormählen and Bernt Schiele

Max Planck Institute for Informatics, Saarbrücken {leonid, ajain, andriluk, thormae, schiele}@mpi-inf.mpg.de

Generation of Novel Training Samples

Generating novel images

- 1. Fit a 3D shape model [6] to the annotated 3D pose
- 2. Reshape and animate the 3D shape model
- 3. Compute 2D mesh with linear blending weights [7] for the pre-segmented person
- 4. Morph 2D mesh: use projected 3D shape model joints
- 5. Render the original appearance to the changed mesh

Statistical 3D human shape model [6]

- Shape learned from 3D laser scans of humans
- Represent shape variations via PCA
- Embed kinematic skeleton with linear blend skinning

Model fitting

- Retarget the 3D shape model skeleton to the annotated 3D pose
- compute inverse kinematics: optimize 3D shape/pose

Varying model shape and pose

- Change shape: sample from the 3D shape distribution
- Change pose: use the motion capture data [1]

shape changes

Generation of novel images

• Use projected 3D model joints to reshape/animate the 2D mesh having the pre-computed skinning weights [7]

• Render the appearance and project the novel sample into the background image

Models

People detection: Deformable Part Model (DPM) [4]

 \Rightarrow robust *articulated* people detection when trained on our novel samples

Joint PS-DPM model

Data

Pose estimation: Pictorial Structures (PS) [3, 5] • Flexible configuration of body parts with pose prior

• Adapt the DPM: train linear regression to predict the torso endpoints from the DMP model parts • New torso likelihood: $p(e_i(l_i)) = p_{ps}(e_i(l_i))p_{dpm}(e_i(l_i))$

– Multi-scale Leeds Sport Poses (LSP)

Results

People detection • Image Parsing (IP) [9] 76.1 33.9 37.2 88.6 DPM-IP-AR 1000 init pose (87.2% AP) DPM-LSP init pose (81.2% A DPM-IP-AR ±4 sigma, Gauss, init pose (90.1% AP)
DPM-IP init pose (76.1% AP) DPM-IP-AR 1000 init bb (81.6% AP) DPM-IP init pose (76.1% AP) DPM-VOC (68.0% AP) DPM-IP init bb (79.5% A 3 0.4 0.5 0.6 0. Initialization **Comparison to SOTA** Data ratio

real/synthetic	AP,
100 IP/0	7
100 IP/400 R	8
100 IP/400 AR	8
100 IP/900 AR	8
100 IP/1900 AR	8

Pose estimation

• Image Parsing (IP) [9]

Setting

Image Parsing (+ Reshape (R) + Joint PS-Andriluka et al.

Yang&Ramanan Johnson&Everin

People detection/pose estimations "in the wild"

• Multi-scale LSP

DPM-LSP-AR + J
DPM-LSP-AR
DPM-IP-AR + PS
DPM-VOC + PS
PS-IP-R + PS

References

[1] Cmu graphics lab motion capture database.

- structures. IJCV'11.

- deformation. In SIGGRAPH'11.
- Annotation. In CVPR'11.
- CVPR'11.

• Percentage Correct Parts (PCP) criterion

	Torso	Upper legs	Lower legs	Upper arms	Fore- arms	Head	Total	
IP)	84.9	71.5	61.5	50.2	36.6	71.2	59.6	
.)	87.8	75.1	65.9	52.4	36.1	71.7	61.9	
+DPM	88.8	77.3	67.1	53.7	36.1	73.7	63.1	
[2] *	83.9	70.5	63.4	50.5	35.1	70.7	59.4	
, [10] *	82.9	69.0	63.9	55.1	35.4	77.6	60.7	
gham, [8]	87.6	74.7	67.1	67.3	45.8	76.8	67.4	
uated using our implementation of PCP criterion								

a using our implementation of PCP criterion

[2] M. Andriluka, S. Roth, and B. Schiele. Discriminative appearance models for pictorial

[3] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, 2009.

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. PAMI'10.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV'05. [6] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel. A statistical model of human pose and body shape. In CGF (Proc. Eurographics'08).

[7] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded biharmonic weights for real-time

[8] S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate

[9] D. Ramanan. Learning to parse images of articulated objects. In *NIPS'06*.

[10] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In