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Goal

• Detection and pose estimation of highly articulated
people in sport scenes

• Address the lack-of-training-data problem by
automatically generating novel training samples

• Improve pose estimation by leveraging the strong
evidence from people detector

Contributions

• Novel method for automatic generation of multiple
training examples from a single image

⇒ training from generated and real data improves the
performance over real data alone
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• Propose a joint model: integrate the evidence from
DPM [4] into the Pictorial Structures (PS) [3, 5]
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• Define a new challenge: joint detection and pose
estimation of multiple people “in the wild”

⇒Data and pose estimation software available
https://www.d2.mpi-inf.mpg.de/articulated-data

Generation of Novel Training Samples

1. Fit a 3D shape model [6] to the annotated 3D pose

2. Reshape and animate the 3D shape model

3. Compute 2D mesh with linear blending weights [7] for
the pre-segmented person

4. Morph 2D mesh: use projected 3D shape model joints

5. Render the original appearance to the changed mesh

Statistical 3D human shape model [6]

• Shape learned from 3D laser scans of humans

• Represent shape variations via PCA

• Embed kinematic skeleton with linear blend skinning

Model fitting

• Retarget the 3D shape model skeleton to the annotated
3D pose

– compute inverse kinematics: optimize 3D shape/pose

Varying model shape and pose

• Change shape: sample from the 3D shape distribution

• Change pose: use the motion capture data [1]

shape changes pose changes

Generation of novel images

• Use projected 3D model joints to reshape/animate the
2D mesh having the pre-computed skinning weights [7]

• Render the appearance and project the novel sample
into the background image

Models

Pose estimation: Pictorial Structures (PS) [3, 5]

• Flexible configuration of body parts with pose prior
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Figure 2. (left) Kinematic prior

People detection: Deformable Part Model (DPM) [4]

⇒ robust articulated people detection when trained on our
novel samples

Joint PS-DPM model

• Adapt the DPM: train linear regression to predict the
torso endpoints from the DMP model parts

• New torso likelihood: p(ei(li)) = pps(ei(li))pdpm(ei(li))

Data

• Example novel training images
IP Animated/Reshaped IP (ours)

• Proposed “in the wild” challenge

– Multi-scale Leeds Sport Poses (LSP)

Results

People detection

• Image Parsing (IP) [9]
real/synthetic AP, [%]

100 IP/0 76.1

100 IP/400 R 83.9
100 IP/400 AR 87.2
100 IP/900 AR 88.6
100 IP/1900 AR 88.1

Data ratio
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Initialization Comparison to SOTA

Pose estimation

• Image Parsing (IP) [9]

• Percentage Correct Parts (PCP) criterion
Setting Torso Upper Lower Upper Fore- Head Total

legs legs arms arms

Image Parsing (IP) 84.9 71.5 61.5 50.2 36.6 71.2 59.6
+ Reshape (R) 87.8 75.1 65.9 52.4 36.1 71.7 61.9

+ Joint PS+DPM 88.8 77.3 67.1 53.7 36.1 73.7 63.1

Andriluka et al., [2] ∗ 83.9 70.5 63.4 50.5 35.1 70.7 59.4
Yang&Ramanan, [10] ∗ 82.9 69.0 63.9 55.1 35.4 77.6 60.7
Johnson&Everingham, [8] 87.6 74.7 67.1 67.3 45.8 76.8 67.4

∗ evaluated using our implementation of PCP criterion

People detection/pose estimations “in the wild”

• Multi-scale LSP

• Average Precision (AP) criterion
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Full body Body parts Body parts
(DPM-IP-AR + PS) (DPM-LSP-AR + J. PS+DPM)

Method Torso Upper Lower Upper Fore- Head Total
legs legs arms arms

DPM-LSP-AR + J. PS+DPM 40.5 37.5 30.8 18.0 4.3 34.2 25.6
DPM-LSP-AR 38.9 35.6 29.3 18.0 4.2 33.6 24.7
DPM-IP-AR + PS 32.5 31.2 24.9 15.8 3.6 28.2 21.2
DPM-VOC + PS 29.9 25.2 20.0 14.2 3.6 27.4 18.3
PS-IP-R + PS 29.1 28.7 23.5 14.7 4.0 24.5 19.5
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[7] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded biharmonic weights for real-time

deformation. In SIGGRAPH’11.
[8] S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate

Annotation. In CVPR’11.
[9] D. Ramanan. Learning to parse images of articulated objects. In NIPS’06.

[10] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In
CVPR’11.


