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Figure 1: Overview of our approach and parameterized pooling operator. Learnt
weights realize different pooling strategies. 4 pooled feature per code coordinate al-
lows us to recover the well know spatial pyramid matching as a special case.

In this paper we address both problems by using a parameterized version of the pooling
operator, that is ⇥w(U) :=

P
M

j=1 wj

· u
j

, where a · b is the element-wise multi-
plication of two vectors a and b. Note that the standard spatial division of the image
into subregions can be recovered from this parameterized version of the pooling op-
erator by setting the vectors w

j

either to a vector of zeros 0, or a vector of ones 1.
For instance, features obtained from dividing the image into 2 subregions can be re-
covered from ⇥ by concatenating two vectors:

PM
2
j=1 1 · u

j

+

P
M

j=M
2 +1 0 · u

j

, and
PM

2
j=1 0 · u

j

+

P
M

j=M
2 +1 1 · u

j

.

More generally, let F := {⇥w}w be the family of the pooling functions parameterized
by the vector w, and let w⇤,l be the ’best’ parameter chosen from the family F based
on the initial configuration l, and the given set of imagesWe will show the learning
procedure that can select such vectors in the next subsection. Figure 3(a) shows four
initial configurations that mimic the standard 2-by-2 spatial image division. Every such
initial configuration can lead to different w⇤,l as it is shown in Figure 3(b). Clearly,
the family F contains all possible ’soft’ and ’hard’ spatial divisions of the image, and
therefore can be considered as theirs generalization.

2.2 Learnable pooling regions

The main idea of the proposed method is to learn jointly the pooling weights w and the
parameters of the classifier. Intuitively, the classifier has access to the classes that the
images belong to, and therefore can shape the pooling regions. On the other hand, the
method aggregates statistics of the codes over such learnt regions and pass them to the
classifier allowing to achieve higher accuracy. Such joint training of the classifier and
the pooling regions can be done by adapting the backpropagation algorithm, and so can
be interpreted as a neural network.

Consider a dictionary producing M codes, each K dimensional. Every coordinate of
the code is an input layer for the neural network. Then we connect every j-th input
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discuss two approximations of our method. First ap-
proximation introduces a pre-pooling step and there-
fore reduces the spatial dimension of the codes. The
second approximation divides the codes into a set of
smaller batches (subset of codes) that can be optimized
independently and therefore in parallel.

Finally, we evaluate our method on the CIFAR-10 and
show strong improvements in the regime of small dic-
tionaries where our more flexible model shows its ca-
pability to make best use of the representation by ex-
ploring spatial pooling strategies specific to every co-
ordinate of the code. Despite the diminishing return,
our performance improvements persist up to largest
codes we’ve investigated. We also show strong classi-
fication performance on the CIFAR-100 dataset where
our method outperforms, to the best of our knowledge,
the state-of-the-art on this dataset.

2. Method

As opposed to the methods that use fixed spatial pool-
ing regions in the object classification task (Lazebnik
et al., 2006; Yang et al., 2009) our method jointly op-
timizes both the classifier and the pooling regions. In
this way, the learning signal available in the classifier
can help shaping the pooling regions in order to arrive
at better pooled features. In turn better features, that
are fed into the classifier, are expected to reduce the
classification error further.

2.1. Parameterized pooling operator

The simplest form of the spatial pooling is computing
histogram over the whole image. This can be expressed
as ⌃(U) :=

P
M

j=1 uj

, where u

j

2 RK is a code (out of
M such codes) and an index j refers to the spatial lo-
cation that the code originates from1. A code is an en-
coded patch extracted from the image. The proposed
method doesn’t make any explicit assumptions about
the method used to extract patches nor an encoding
scheme used to encode such patches. So the code can
be a sparse code or 1-of-K hard assignment or a trian-
gle code. Nonetheless, the last coding method is used
in this paper to validate the proposed method. Such
a simple pooling approach looses all spatial informa-
tion of the codes, and therefore Lazebnik et al. (2006)
proposed to first divide the image into subregions, and
afterwards to create pooled feature by concatenating
histograms computed over each subregion. There are
two problems with such an approach: firstly, the divi-
sion is largely arbitrary and in particular independent

1That is j = (x, y) where x and y refer to the spatial
location of the center of the extracted patch.

of the data; secondly, discretization artifacts can occur
as spatially nearby codes can belong to two di↵erent
regions because the ’hard’ division is made.

In this paper we address both problems by using a
parameterized version of the pooling operator

⇥w(U) :=
MX

j=1

w

j

� u
j

(1)

where a � b is the element-wise multiplication of two
vectors a and b. Note that the standard spatial divi-
sion of the image into subregions can be recovered from
this parameterized version of the pooling operator by
setting the vectors w

j

either to a vector of zeros 0, or a
vector of ones 1. For instance, features obtained from
dividing the image into 2 subregions, with a split at the
middle of the image, can be recovered from ⇥ by con-

catenating two vectors:
PM

2
j=1 1�uj

+
P

M

j=M
2 +1 0�uj

,

and
PM

2
j=1 0 � u

j

+
P

M

j=M
2 +1 1 � u

j

, where
�
1, ..., M

2

 

and
�

M

2 + 1, ..., M
 

refer to the first and second half
of the image respectively.

More generally, let F := {⇥w}w be a family of the
pooling functions given by Eq. 1, parameterized by the
vector w, and let w

⇤,l be the ’best’ parameter chosen
from the family F based on the initial configuration l
and a given set of images.2 First row of Figure 2 shows
four initial configurations that mimic the standard 2-
by-2 spatial image division. Every initial configuration
can lead to di↵erent w

⇤,l as it is shown in Figure 2.
Clearly, the family F contains all possible ’soft’ and
’hard’ spatial divisions of the image, and therefore can
be considered as their generalization.

2.2. Learnable pooling regions

The main idea of the proposed method is to learn
jointly the pooling weights w together with the param-
eters of the classifier. Intuitively, the classifier during
training has access to the classes that the images be-
long to, and therefore can shape the pooling regions.
On the other hand, the method aggregates statistics
of the codes over such learnt regions and pass them
to the classifier allowing to achieve higher accuracy.
Such joint training of the classifier and the pooling re-
gions can be done by adapting the backpropagation
algorithm (Bishop, 1999; LeCun et al., 1998), and so
can be interpreted as a densely connected multilayer
perceptron (Collobert & Bengio, 2004; Bishop, 1999).

Consider a sampling scheme and an encoding method
producing M codes each K dimensional. Every coor-

2 We will show the learning procedure that can select
such parameter vectors in the following subsection.
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where aj := exp(zj)P
l exp(zl)

. Since equation 7 is a vector, and we compute deriva-

tives with respect to the vector too, the whole gradient is a matrix. The
easiest way to understand equation for �

(3) is by ’pattern matching’. That
is, from the backpropagation rule we have:

@J

@✓

= �

(2)(a(2))T (9)

where a

(2) is either a data point, or a matrix of data points with examples
ordered column-wise. On the other hand we also have:

@J

@✓j
=

MX

i=1

(aji � 1{y

(i) = j})a(i,2) (10)

This result is well-known. So perhaps I should cite some paper?

– �

(2) :=
h
⇥

T
�

(3)

i
� f

�(z(2)) where f(z(2)) is the pooling function. Here we

allow two possibilities, either weighted sum pooling f(x(2)) := w

T
[jl]x[j],

or weighted soft-max pooling, that is f(x(2)) := logwT
[jl]x̄[j] where x are

sparse codes, and x̄ := exp(↵x). Hyper-parameter ↵ controls approximation
strength to the max-function. Notation w

T
[jl]x[j] denotes a vector of size K ·D

where K is the size of dictionary, and D is the number of the aggregating
neurons. Every entry of this vector can be described as

(wT
[jl]x[j])l·D+j :=

NX

n=1

wjlnxjn

where N is the number of samples taken per image, wjln are weights corre-
sponding to j-th dictionary entry, l-th aggregating neuron and n-th sample,
and xjn are codes corresponding to j-th dictionary entry and n-th sample. If
sum pooling is used then f(z(2)) = z, and f

�(z(2)) = 1 (in back-propagation
f

�(z(2)) is the element-wise derivative, not a gradient). If soft-max pooling
is used then f(z(2)) = log z, and f

�(z(2)) = 1

z .

– @J
@⇥ := d

(3)(a(2))T where a

(2) is a result of pooling (aggregation vector), and
⇥ is a classification’s parameters matrix of size L ⇥ M .

– @J
@W := d

(2)

x

T where W is a pooling parameters’ matrix of size K · D ⇥ N .

Should we cite here ufldl?

3.4 Regularization

In order to prevent from overfitting we also propose a few regularization terms:

– Regularization put on the classification objective that is 1

2

||⇥||2l2 .
– Regularization put on the pooling weights, that is we constrain weights to

be 0  wjln  1. Constraining weights in this way is particularly important
for soft-max pooling since it prevents from dealing with complex numbers.

– We can also penalize weights whenever the pooling surface is non-smooth.
This can be done by (wjln � wjl(n− 1)

)2.
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where aj := exp(zj)P
l exp(zl)

. Since equation 7 is a vector, and we compute deriva-

tives with respect to the vector too, the whole gradient is a matrix. The
easiest way to understand equation for �

(3) is by ’pattern matching’. That
is, from the backpropagation rule we have:

@J

@✓

= �

(2)(a(2))T (9)

where a

(2) is either a data point, or a matrix of data points with examples
ordered column-wise. On the other hand we also have:

@J

@✓j
=

MX

i=1

(aji � 1{y

(i) = j})a(i,2) (10)

This result is well-known. So perhaps I should cite some paper?

– �

(2) :=
h
⇥

T
�

(3)

i
� f

0(z(2)) where f(z(2)) is the pooling function. Here we

allow two possibilities, either weighted sum pooling f(x(2)) := w

T
[jl]x[j],

or weighted soft-max pooling, that is f(x(2)) := logwT
[jl]x̄[j] where x are

sparse codes, and x̄ := exp(↵x). Hyper-parameter ↵ controls approximation
strength to the max-function. Notation w

T
[jl]x[j] denotes a vector of size K ·D

where K is the size of dictionary, and D is the number of the aggregating
neurons. Every entry of this vector can be described as

(wT
[jl]x[j])l·D+j :=

NX

n=1

wjlnxjn

where N is the number of samples taken per image, wjln are weights corre-
sponding to j-th dictionary entry, l-th aggregating neuron and n-th sample,
and xjn are codes corresponding to j-th dictionary entry and n-th sample. If
sum pooling is used then f(z(2)) = z, and f

0(z(2)) = 1 (in back-propagation
f

0(z(2)) is the element-wise derivative, not a gradient). If soft-max pooling
is used then f(z(2)) = log z, and f

0(z(2)) = 1

z .

– @J
@⇥ := d

(3)(a(2))T where a

(2) is a result of pooling (aggregation vector), and
⇥ is a classification’s parameters matrix of size L ⇥ M .

– @J
@W := d

(2)

x

T where W is a pooling parameters’ matrix of size K · D ⇥ N .

Should we cite here ufldl?

3.4 Regularization

In order to prevent from overfitting we also propose a few regularization terms:

– Regularization put on the classification objective that is 1

2

||⇥||2l2 .
– Regularization put on the pooling weights, that is we constrain weights to

be 0  wjln  1. Constraining weights in this way is particularly important
for soft-max pooling since it prevents from dealing with complex numbers.

– We can also penalize weights whenever the pooling surface is non-smooth.
This can be done by (wjln � wjl(n�1)

)2.
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whereaj:=exp(zj) P
lexp(zl)

.Sinceequation7isavector,andwecomputederiva-

tiveswithrespecttothevectortoo,thewholegradientisamatrix.The
easiestwaytounderstandequationfor�

(3)isby’patternmatching’.That
is,fromthebackpropagationrulewehave:

@J

@✓

=�

(2)(a(2))T(9)

wherea

(2)iseitheradatapoint,oramatrixofdatapointswithexamples
orderedcolumn-wise.Ontheotherhandwealsohave:

@J

@✓j
=

MX

i=1

(aji�1{y

(i)=j})a(i,2)(10)

Thisresultiswell-known.SoperhapsIshouldcitesomepaper?
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(2):=
h
⇥

T
�

(3)

i
�f

0(z(2))wheref(z(2))isthepoolingfunction.Herewe

allowtwopossibilities,eitherweightedsumpoolingf(x(2)):=w

T
[jl]x[j],

orweightedsoft-maxpooling,thatisf(x(2)):=logwT
[jl]̄x[j]wherexare

sparsecodes,andx̄:=exp(↵x).Hyper-parameter↵controlsapproximation
strengthtothemax-function.Notationw

T
[jl]x[j]denotesavectorofsizeK·D

whereKisthesizeofdictionary,andDisthenumberoftheaggregating
neurons.Everyentryofthisvectorcanbedescribedas

(wT
[jl]x[j])l·D+j:=

NX

n=1

wjlnxjn

whereNisthenumberofsamplestakenperimage,wjlnareweightscorre-
spondingtoj-thdictionaryentry,l-thaggregatingneuronandn-thsample,
andxjnarecodescorrespondingtoj-thdictionaryentryandn-thsample.If
sumpoolingisusedthenf(z(2))=z,andf

0(z(2))=1(inback-propagation
f

0(z(2))istheelement-wisederivative,notagradient).Ifsoft-maxpooling
isusedthenf(z(2))=logz,andf

0(z(2))=1

z.

–@J
@⇥:=d

(3)(a(2))Twherea

(2)isaresultofpooling(aggregationvector),and
⇥isaclassification’sparametersmatrixofsizeL⇥M.

–@J
@W:=d

(2)

x

TwhereWisapoolingparameters’matrixofsizeK·D⇥N.
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3.4Regularization

Inordertopreventfromoverfittingwealsoproposeafewregularizationterms:

–Regularizationputontheclassificationobjectivethatis1

2

||⇥||2l2.
–Regularizationputonthepoolingweights,thatisweconstrainweightsto

be0wjln1.Constrainingweightsinthiswayisparticularlyimportant
forsoft-maxpoolingsinceitpreventsfromdealingwithcomplexnumbers.

–Wecanalsopenalizeweightswheneverthepoolingsurfaceisnon-smooth.
Thiscanbedoneby(wjln�wjl(n�1)

)2.
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3 Theory

3.1 Model

– In [1] sum operator was proposed as a pooling operator, that is ⌃(U) :=PM
j=1

uj , where uj is a codeword (out of M such codewords), and U is
a matrix containing all codewords in its columns. Here we propose more
general operator which computes linear combination of the codewords, that
is ⇥(U)s :=

PM
j=1

wj · uj , where a · b is piece-wise multiplication of two
vectors a and b. In this model parameters wj for every j 2 {1, 2, ..., M}
have to be learnt from data.

– In [2] max operator was proposed as a pooling operator, that is M(U) :=
max{u

1

,u

2

, ...,uM}. Instead, here we propose ’softer’ version of the max

operator, that is ⇥(U)m := log(
PM

j=1

exp(wj · uj)).
– In comparison with [1] and [2] we don’t assume spatial partitioning of the

input image. Instead we allow network to learn it from data by learning
appropriate weights. Moreover, it is also possible to learn di↵erent pooling
schemes across the codes.

– We use logistic regression on the top of our architecture.
– See Fig. 2 for pictorial image of our architecture.

3.2 Obstacles

– Variable size of the input units (which is equal to the number of extracted de-
scriptors) cause problems during training since we cannot change the number
of parameters. Here we propose the following solutions:

• Resize all images to have the same image ratio.
• Fix number of samples.
• Fix ’sampling’ template and interpolate samples if needed.

– Number of parameters to learn can be huge (precisely KM where K is the
size of used vocabulary, and M is number of extracted descriptors). Here we
propose the following solutions:

• Keep K or M small.
• Share weights between di↵erent coordinates (equivalently between dif-

ferent neurons).

3.3 Backpropagation

Standard backpropagation

– Perform feedforward pass, and compute:
• a

(1) := x where x is a data point
• z

(l) := W

(l�1)

a

(l�1) + b

(l�1)

• a

(l) := f(z(l)) where f is an activation function
– Compute �

(nl) := J(a(nl)) � f

0(z(nl)), where nl denotes the final layer and
f(z(nl)) is the activation function of the final layer, and J is the objective
function.
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3 Theory

3.1 Model

– In [1] sum operator was proposed as a pooling operator, that is ⌃(U) :=PM
j=1

uj , where uj is a codeword (out of M such codewords), and U is
a matrix containing all codewords in its columns. Here we propose more
general operator which computes linear combination of the codewords, that
is ⇥(U)s :=

PM
j=1

wj · uj , where a · b is piece-wise multiplication of two
vectors a and b. In this model parameters wj for every j 2 {1, 2, ..., M}
have to be learnt from data.

– In [2] max operator was proposed as a pooling operator, that is M(U) :=
max{u

1

,u

2

, ...,uM}. Instead, here we propose ’softer’ version of the max

operator, that is ⇥(U)m := log(
PM

j=1

exp(wj · uj)).
– In comparison with [1] and [2] we don’t assume spatial partitioning of the

input image. Instead we allow network to learn it from data by learning
appropriate weights. Moreover, it is also possible to learn di↵erent pooling
schemes across the codes.

– We use logistic regression on the top of our architecture.
– See Fig. 2 for pictorial image of our architecture.

3.2 Obstacles

– Variable size of the input units (which is equal to the number of extracted de-
scriptors) cause problems during training since we cannot change the number
of parameters. Here we propose the following solutions:

• Resize all images to have the same image ratio.
• Fix number of samples.
• Fix ’sampling’ template and interpolate samples if needed.

– Number of parameters to learn can be huge (precisely KM where K is the
size of used vocabulary, and M is number of extracted descriptors). Here we
propose the following solutions:

• Keep K or M small.
• Share weights between di↵erent coordinates (equivalently between dif-

ferent neurons).

3.3 Backpropagation

Standard backpropagation

– Perform feedforward pass, and compute:
• a

(1) := x where x is a data point
• z

(l) := W

(l�1)

a

(l�1) + b

(l�1)

• a

(l) := f(z(l)) where f is an activation function
– Compute �

(nl) := J(a(nl)) � f

0(z(nl)), where nl denotes the final layer and
f(z(nl)) is the activation function of the final layer, and J is the objective
function.
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3 Theory

3.1 Model

– In [1] sum operator was proposed as a pooling operator, that is ⌃(U) :=PM
j=1

uj , where uj is a codeword (out of M such codewords), and U is
a matrix containing all codewords in its columns. Here we propose more
general operator which computes linear combination of the codewords, that
is ⇥(U)s :=

PM
j=1

wj · uj , where a · b is piece-wise multiplication of two
vectors a and b. In this model parameters wj for every j 2 {1, 2, ..., M}
have to be learnt from data.

– In [2] max operator was proposed as a pooling operator, that is M(U) :=
max{u

1

,u

2

, ...,uM}. Instead, here we propose ’softer’ version of the max

operator, that is ⇥(U)m := log(
PM

j=1

exp(wj · uj)).
– In comparison with [1] and [2] we don’t assume spatial partitioning of the

input image. Instead we allow network to learn it from data by learning
appropriate weights. Moreover, it is also possible to learn di↵erent pooling
schemes across the codes.

– We use logistic regression on the top of our architecture.
– See Fig. 2 for pictorial image of our architecture.

3.2 Obstacles

– Variable size of the input units (which is equal to the number of extracted de-
scriptors) cause problems during training since we cannot change the number
of parameters. Here we propose the following solutions:

• Resize all images to have the same image ratio.
• Fix number of samples.
• Fix ’sampling’ template and interpolate samples if needed.

– Number of parameters to learn can be huge (precisely KM where K is the
size of used vocabulary, and M is number of extracted descriptors). Here we
propose the following solutions:

• Keep K or M small.
• Share weights between di↵erent coordinates (equivalently between dif-

ferent neurons).

3.3 Backpropagation

Standard backpropagation

– Perform feedforward pass, and compute:
• a

(1) := x where x is a data point
• z

(l) := W

(l�1)

a

(l�1) + b

(l�1)

• a

(l) := f(z(l)) where f is an activation function
– Compute �

(nl) := J(a(nl)) � f

0(z(nl)), where nl denotes the final layer and
f(z(nl)) is the activation function of the final layer, and J is the objective
function.

•  Standard pooling formula 

•  Our parameterization 

1. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories. IEEE 2006. 
2. Yang, J., Yu, K., Gong Y., Huang T.: Linear spatial pyramid matching using sparse coding for image classification. CVPR 2009. 
3.  Jia, Y., Huang, C.: Beyond spatial pyramid: Receptive field learning for pooled image features. NIPS Workshop on Deep Learning 2011. 
4. Coates, A., Ng, A.: The importance of encoding versus training with sparse coding and vector quantization. ICML 2011. 
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Fig. 1.2. Toy example of constructing a pyramid for L = 2. The image has three
feature types, indicated by circles, diamonds, and crosses. At the top, we subdivide
the image at three different levels of resolution. Next, for each level of resolution
and each channel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (1.3).

numbers, we can implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted histograms of
all channels at all resolutions (Fig. 1.2). For L levels and M channels, the
resulting vector has dimensionality M

∑L
!=0 4! = M 1

3(4L+1 − 1). Several
experiments reported in Section 1.3 use the settings of M = 400 and L = 3,
resulting in 34, 000-dimensional histogram intersections. However, these op-
erations are efficient because the histogram vectors are very sparse. In fact,
just as in Grauman and Darrell (2005), the computational complexity of the
kernel is linear in the number of features (more recently, Maji et al. (2008)
have shown that the histogram intersection kernel is amenable to further
optimizations, leading to extremely fast support vector classifiers).

The final issue is normalization, which is necessary to account for images
with different numbers of local features. In our own work, we follow a
very simple strategy: we normalize all histograms by the total weight of
all features in the image, in effect forcing the total number of features in
all images to be the same. Because we use a dense feature representation
(see Section 1.3.1), and thus do not need to worry about spurious feature
detections resulting from clutter, this practice is sufficient to deal with the
effects of variable image size.

Figure from Lazebnik et. al. (1) 

Motivation 
•  State-of-the-art object recognition algorithms are 

based on histograms of patch representations 
•  To preserve some spatial information statistics are 

aggregated locally which is called spatial pooling 
•  Current pooling schemes are hand-crafted or 

template-based (e.g. SPM) 
 
•  Are such spatial regions optimal? 
•  Can we train jointly both the classifier and spatial 

regions? 

Extract patches 

Encode patches 

Spatial Pooling 

Classifier 

•  Logistic regression as 
classifier 

•  Parameterized pooling 
scheme 

•  Joint training of 
classifier and pooling  
with back propagation 

•  CIFAR-10 as dataset 
•  Coates’ code as a baseline 

(Coates et. al. (4)) 

•  Triangle coding 
•    For small dictionaries 

 (16,  32, 64) presented 
 method has higher
 accuracy than baseline 
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– For every layer l > 1 compute �

(l) := ((W (l))T

�

(l+1))�f

0(z(l)) where f(z(l))
is the activation function of the l-th layer.

From the backpropagation we can recover gradients as follows:

rW (l)J(W , b) := �

(l+1)(a(l))T (1)

rb(l)J(W , b) := �

(l+1) (2)

Notice that we assumed the objective function is a composition of the ’objective’
function with the activation function from the last layer, that is:

J(✓;x) := (g � f)(z(nl)) (3)

where z

(nl) := W

(nl)
a

(nl�1), f is the activation function of the last layer, g is
the ’objective’ function, and g � f is a function composition. So for instance if
J(✓;x) := ||y � hW (x)||

l2 then �

(nl) := �(y � a) � f(z(nl)).

Our backpropagation In our example we use neural network with input layer,
hidden (pooling) layer, and softmax regression as a classification layer. Therefore
we should figure out the backpropagation rule:

– First let develop a rule for d

(3), that is:

�

(3) :=
@J(a(3))

@a

(3)

� f

0(z(3)) = � 1

M

(I � P ) (4)

where M is the number of examples, P is softmax probability matrix where
P

ji

denotes p(y(i) = j |x(i)), I is sparse matrix containing value 1 at row j

and column i if and only if class j was observed in the i-th example. Moreover
the objective function J(✓) is defined as

J(✓) := � 1

M

MX

i=1

LX

j=1

1{y

(i) = j} log p(y(i) = j|a(i,2);✓) (5)

and

p(y = j|x;✓) :=
exp(✓T

j

x)
P

L

l=1

exp(✓T

l

x)
(6)

where L denotes the number of classes and 1{y = j} is the indicator function,
and a

(i,2) is an aggregation vector of the i-th training example from the
second layer. Moreover:

f(z(3)) :=
exp(z)

P
L

l=1

exp(z
l

)
(7)

Equation 7 is called soft-max, and its gradient is:

@f(z(3)

j

)

@z

j

= a

j

(1 � a

j

)

@f(z(3)

j

)

@z

k

= �a

j

a

k

(8)
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1 Introduction

There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable. There is another theory which

states that this has already happened

subject to W 2 [0, 1]K⇥M⇥L
(1)

al :=

8
>>><

>>>:

MX

j=1

wl
j � uj

M
max

j=1
wl

j � uj

2 Conclusion

“I always thought something was fundamentally wrong with the universe” [1]

References

[1] D. Adams. The Hitchhiker’s Guide to the Galaxy. San Val, 1995.

Source Target Acc.

CIFAR-10 CIFAR-100 52.86%
CIFAR-100 CIFAR-10 80.35%

Table 1: We train the pooling regions on the ’Source’ dataset. Next, we use such

regions to train the classifier on the ’Target’ dataset where the test accuracy is

reported.
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Our method
• Parameterized pooling operator
• Joint training of classifier and pooling regions
• Efficient and parallel approximation training
• Logistic regression as a classifier
• Our optimization problem:
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2.3 Regularization

In order to prevent overfitting and to improve the generalization, we have to regularize
our network as we have to deal with a rather large number of the parameters that have to
be learnt. In this paper we consider regularizers for the classifier, pooling parameters,
non-negativity constraints and a smoothness term.

For the classification ⇥ and pooling parameters W , we employ simple L2 regular-
ization which yields the terms 1

2 ||⇥||2
l2

and 1
2

P
k

||W k||2
l2

. In order to ensure the
interpretability of the pooling weights as well as facilitate transform among models,
we add a ’soft’ constraint preferring solutions with non-negative pooling weights. To
reduce quantization artifacts of the pooling strategy as well as ensure smoothness of
the output w.r.t. small translations of the image, we also penalize weights whenever the
pooling surface is non-smooth. This can be done by measuring the spatial variation,
that is ||r

x
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k||2
l2

+ ||r
y

W

k||2
l2

for every layer k. This regularization enforces soft
transition between the pooling subregions.

Moreover, every regularization term comes with their own hyper-parameter to be set.
Although this can be done by the cross-validation, one has to remember that it can be
computationally expensive. All in all, the whole objective that we want to optimize can
be expressed as
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where

P
(W ) is a sum over all elements of W , a

l

is dependable on the parameters
W the l-th pooling neuron described by Formula 1, and ||W ||

l2 is interpreted as the
Frobenius norm.

2.4 Approximation of the model

The presented approach might be intractable in the means of the CPU time, and mem-
ory storage when applied to the datasets of images such as CIFAR-10. Therefore we
propose two approximations to our method.

First approximation does a fine-grained spatial partition of the image, and then pool
the codes over such subregions. This operation, we call it a pre-pooling step, reduces
the number of considered codes by the factor of the pre-pooling size. For instance, if
we collect M codes and the pre-pooling size is S per dimension, then we reduce the
number of codes to a number M

S

2 .

The second approximation divides a K dimensional code into K

D

batches, each D di-
mensional (where D  K). Then we train our model on all such prepared batches in
parallel to obtain the pooling weights. Later, we can train the classifier on top of the
concatenated batches by using the parameterized pooling operator where weights were
similarly coupled (we call this approximation the batched model). Since the ordering
of the codes is arbitrary, we also consider D dimensional batches formed from the per-
muted version of the original codes, and combine them together with the concatenated
batches to boost the classification accuracy (we call this approximation the permuted
batched model).
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ory storage when applied to the datasets of images such as CIFAR-10. Therefore we
propose two approximations to our method.

First approximation does a fine-grained spatial partition of the image, and then pool
the codes over such subregions. This operation, we call it a pre-pooling step, reduces
the number of considered codes by the factor of the pre-pooling size. For instance, if
we collect M codes and the pre-pooling size is S per dimension, then we reduce the
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batches, each D di-
mensional (where D  K). Then we train our model on all such prepared batches in
parallel to obtain the pooling weights. Later, we can train the classifier on top of the
concatenated batches by using the parameterized pooling operator where weights were
similarly coupled (we call this approximation the batched model). Since the ordering
of the codes is arbitrary, we also consider D dimensional batches formed from the per-
muted version of the original codes, and combine them together with the concatenated
batches to boost the classification accuracy (we call this approximation the permuted
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Next, we connect all pooling neurons with the classifier allowing the information to
circulatebetween thepooling layersand theclassifier.
Although our method is independent of the choice of a dictionary and an encoding
scheme, in thiswork the triangle coding wasused [9]. That is, wefirst apply K-means
clustering in order to learnK centroids
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beseen asa ’softer’ version the1-to-K hard assignment schemewhich arisesnaturally
from theK-meansclustering [9].
Similarly, potentially every multi-class classifier that can be interpreted in terms of an
artificial neural network can be connected to the pooling neurons, for the purpose of
thiswork the logistic regressionwaschosen. Thisclassifier can readily beconnected to
thepooling neuronsvia the formula
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whereD denotes thenumber of all images, L is thenumber of all classes, y(i) isa label
assigned to the i-th input image, and a

(i,2) are responses from the ’stacked’ pooling
neurons [a
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for the i-th image. We used the logistic function to represent the proba-
bilities in Formula3, that is
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Since the classifier is connected to the pooling neurons, our task is to learn jointly the
pooling parametersW together with theclassifier parameters⇥.
Finally, we also need a learning procedure able to train jointly both the classifier and
the learnable pooling regions. Standard gradient descents algorithms updates the pa-
rametersusing the following fixed point iteration

X

t+1
:= X

t � �rE(X

t

) (5)
where in our caseX is a vector consisting of thepooling parametersW , the classifier
parameters⇥ and E is the energy function given by Formula 3 coupled with Formula
1. In practice, however, we employed a quasi-Newton algorithm LBFGS1 which also
performs a one dimensional line-searching in order to find appropriate learning rate
�. In order to find the gradient rE(X) we adapted the standard backpropagation
algorithm [10, 11] which is a natural choice for methods that can be interpreted as
artificial neural networks.

1The algorithm, developed by Mark Schmidt, can be downloaded from the following web-
page: http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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2.3 Regularization

In order to prevent overfitting and to improve the generalization, we have to regularize
our network as we have to deal with a rather large number of the parameters that have to
be learnt. In this paper we consider regularizers for the classifier, pooling parameters,
non-negativity constraints and a smoothness term.

For the classification ⇥ and pooling parameters W , we employ simple L2 regular-
ization which yields the terms 1
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and 1
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. In order to ensure the
interpretability of the pooling weights as well as facilitate transform among models,
we add a ’soft’ constraint preferring solutions with non-negative pooling weights. To
reduce quantization artifacts of the pooling strategy as well as ensure smoothness of
the output w.r.t. small translations of the image, we also penalize weights whenever the
pooling surface is non-smooth. This can be done by measuring the spatial variation,
that is ||r
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for every layer k. This regularization enforces soft
transition between the pooling subregions.

Moreover, every regularization term comes with their own hyper-parameter to be set.
Although this can be done by the cross-validation, one has to remember that it can be
computationally expensive. All in all, the whole objective that we want to optimize can
be expressed as
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where

P
(W ) is a sum over all elements of W , a

l

is dependable on the parameters
W the l-th pooling neuron described by Formula 1, and ||W ||

l2 is interpreted as the
Frobenius norm.

2.4 Approximation of the model

The presented approach might be intractable in the means of the CPU time, and mem-
ory storage when applied to the datasets of images such as CIFAR-10. Therefore we
propose two approximations to our method.

First approximation does a fine-grained spatial partition of the image, and then pool
the codes over such subregions. This operation, we call it a pre-pooling step, reduces
the number of considered codes by the factor of the pre-pooling size. For instance, if
we collect M codes and the pre-pooling size is S per dimension, then we reduce the
number of codes to a number M

S

2 .

The second approximation divides a K dimensional code into K

D

batches, each D di-
mensional (where D  K). Then we train our model on all such prepared batches in
parallel to obtain the pooling weights. Later, we can train the classifier on top of the
concatenated batches by using the parameterized pooling operator where weights were
similarly coupled (we call this approximation the batched model). Since the ordering
of the codes is arbitrary, we also consider D dimensional batches formed from the per-
muted version of the original codes, and combine them together with the concatenated
batches to boost the classification accuracy (we call this approximation the permuted
batched model).
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First approximation does a fine-grained spatial partition of the image, and then pool
the codes over such subregions. This operation, we call it a pre-pooling step, reduces
the number of considered codes by the factor of the pre-pooling size. For instance, if
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mensional (where D  K). Then we train our model on all such prepared batches in
parallel to obtain the pooling weights. Later, we can train the classifier on top of the
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Abstract

From the early HMAX model to Spatial Pyramid Matching, pooling
has played an important role in visual recognition. Grouping of local
features and their codes is part of most recent recognition pipelines
and equips these methods with a certain degree of robustness to trans-
lations and deformation yet preserving the same spatial layout of the
local image features. Despite the predominance of this approach, we
have seen little progress to fully adapt the pooling strategy to the task
at hand. This paper proposes a learning method that allows for learn-
ing a task dependent pooling scheme – which includes previously
proposed pooling schemes as a particular instantiation of our method.
In contrast to previous work we allow different pooling strategies for
each code, which shows in particular beneficial for small codes. We
propose a batch-based optimization strategy that allows our approach
to scale up to sizable dictionary. In this manner we discover new
pooling regions that have not been previously used in computer vi-
sion.
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1 Introduction

Spatial pooling plays a crucial role in today’s object recognition and detection systems.
Motivated from biology [1] and statistics of locally orderless images [2], it has found
it’s a way into many stages of today’s computer vision methods. The most popular
visual descriptors like SIFT [3] and HOG [4] compute local histograms of gradients –
which is in fact a version of spatial pooling. In order to form more robust features un-
der the translation or small object deformations, codes activations are often pooled over
even larger areas in a spatial pyramid scheme [5, 6]. In the state of the art recognition
pipelines, to preserve spatial information, many stages of the spatial pooling are em-
ployed. Unfortunately, this critical decision is most prominently based on hand-crafted
algorithms.
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at hand. Thispaper proposesa learningmethod that allows for learn-
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proposedpooling schemesasaparticular instantiation of our method.
In contrast to previouswork weallow different pooling strategies for
each code, which shows in particular beneficial for small codes. We
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to scale up to sizable dictionary. In this manner we discover new
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Spatial pooling playsacrucial role in today’sobject recognition and detection systems.
Motivated from biology [1] and statistics of locally orderless images [2], it has found
it’s a way into many stages of today’s computer vision methods. The most popular
visual descriptors likeSIFT [3] and HOG [4] compute local histograms of gradients –
which is in fact a version of spatial pooling. In order to form more robust features un-
der thetranslation or small object deformations, codesactivationsareoften pooled over
even larger areas in a spatial pyramid scheme [5, 6]. In the state of the art recognition
pipelines, to preserve spatial information, many stages of the spatial pooling are em-
ployed. Unfortunately, this critical decision ismost prominently based on hand-crafted
algorithms.
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LATEX is a document preparat ion system for the TEX typeset t ing pro-
gram. It o↵ers programmable desktop publishing features and extensive fa-
cilit ies for automat ing most aspects of typeset t ing and desktop publishing,
including numbering and cross-referencing, tables and figures, page layout ,
bibliographies, and much more. LATEX was originally writ ten in 1984 by
Leslie Lamport and has become the dominant method for using TEX; few
people write in plain TEX anymore. The current version is LATEX 2".
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F : Meta-features! Hyper-parameters

Method Pooling Units Dict ionary size Accuracy
Coates 4 1600 77.9%
Random 4 1600 76.728%
Random 16 1600 77.31%
Bag of Words 1 1600 71.78%

Table 1: The classificat ion accuracy where our method is compared with the
baseline.
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Next, we connect all pooling neurons with the classifier allowing the information to
circulate between the pooling layers and the classifier.

Although our method is independent of the choice of a dictionary and an encoding
scheme, in this work the triangle coding was used [9]. That is, we first apply K-means
clustering in order to learn K centroids
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from the extracted patches x, and next

we build a K dimensional code by employing the following formula
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(x) := max {0, µ(z) � z
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} (2)
where z

k

:= ||x� c
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l2 and µ(z) is the mean of the elements of z. This encoding can

be seen as a ’softer’ version the 1-to-K hard assignment scheme which arises naturally
from the K-means clustering [9].

Similarly, potentially every multi-class classifier that can be interpreted in terms of an
artificial neural network can be connected to the pooling neurons, for the purpose of
this work the logistic regression was chosen. This classifier can readily be connected to
the pooling neurons via the formula

J(⇥) := � 1
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1{y(i)
= j} log p(y(i)

= j|a(i,2)
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where D denotes the number of all images, L is the number of all classes, y(i) is a label
assigned to the i-th input image, and a

(i,2) are responses from the ’stacked’ pooling
neurons [a
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]
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for the i-th image. We used the logistic function to represent the proba-
bilities in Formula 3, that is

p(y = j|x;⇥) :=
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Since the classifier is connected to the pooling neurons, our task is to learn jointly the
pooling parameters W together with the classifier parameters ⇥.

Finally, we also need a learning procedure able to train jointly both the classifier and
the learnable pooling regions. Standard gradient descents algorithms updates the pa-
rameters using the following fixed point iteration

X

t+1
:= X

t � �rE(X

t

) (5)
where in our case X is a vector consisting of the pooling parameters W , the classifier
parameters ⇥ and E is the energy function given by Formula 3 coupled with Formula
1. In practice, however, we employed a quasi-Newton algorithm LBFGS1 which also
performs a one dimensional line-searching in order to find appropriate learning rate
�. In order to find the gradient rE(X) we adapted the standard backpropagation
algorithm [10, 11] which is a natural choice for methods that can be interpreted as
artificial neural networks.

1The algorithm, developed by Mark Schmidt, can be downloaded from the following web-
page: http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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Learnable Pooling Regions for Image Classification

gions without any approximations in this set of exper-
iments the results are limited to dictionary sizes up to
800. Our method outperforms the approach of Coates
by 10% for dictionary size 16 (our method achieves the
accuracy 57.07%, whereas the baseline only 46.93%).
This improvement is consistent up to the bigger dic-
tionaries although the margin is getting smaller. Our
method is about 2.5% and 1.88% better than the base-
line for 400 and 800 dictionary elements respectively.

Method Dict. size Features Acc.
Jia 1600 6400 80.17%
Coates 1600 6400 77.9%
Our (batches) 1600 6400 79.6%
Our (redundant) 1600 12800 80.02%

Table 1. Comparison of our methods against the baseline
(Coates & Ng, 2011) and Jia & Huang (2011) with respect
to the dictionary size, number of features and the test ac-
curacy on CIFAR-10.

3.4. Scaling up to sizable dictionaries

In subsection 2.4 we have discussed the possibility of
dividing the codes into low dimensional batches and
learning the pooling regions on those. In the follow-
ing experiments we use batches with 40 coordinates
extracted from the original code, as those fit conve-
niently into the memory of a single, standard machine
(about 5 Gbytes for the main data) and can all be
trained in parallel.

Besides a reduction in the memory requirements, these
batches have shown multiple benefits in practice due
to a smaller number of parameters. We need less com-
putations per iterations as well as observe faster con-
vergence. Figure 2(b) shows the classification perfor-
mance for larger dictionaries where we examined the
full model [Our], the baseline [Coates], random pooling
regions (described in subsection 3.5), bag of features,
and two possible approximation - the batched model
[Our (batches)], and the redundantly batched model
[Our (redundant batches)].

Our test results are presented in Table 1. When com-
paring our full model to the approximated versions
with batches for dictionaries of size 200, 400 and 800,
we observe that there is almost no drop in perfor-
mance and we even slightly improve for the bigger
dictionaries. We attribute this to the better condi-
tioned learning problem of the smaller codes within
one batch. With an accuracy for the batched model
of 79.6% we outperform the Coates baseline by 1.7%.
Interestingly, we gain another small improvement to
80.02% by adding redundant batches which amounts

to a total improvement of 2.12% compared to the base-
line. Our method performs comparable to the pooling
strategy of Jia & Huang (2011) which, in turn, uses
more restrictive assumptions on the pooling regions
and employ feature selection.

3.5. Random pooling regions

In our investigation we also include results using ran-
dom pooling regions where the weights for the param-
eterized operator (Eq. 2) were sampled from normal
distribution with mean 0.5 and standard deviation 0.1,
that is w

l

j

⇠ N (0.5, 0.1) for l 2 {1, 2, 3, 4}. Our ex-
periments show that the random pooling regions can
compete with the standard spatial pooling (Figure 2(a)
and 2(b)) on the CIFAR-10 dataset. This is especially
visible in the regime of bigger dictionaries where the
di↵erence is only 1.09%. The obtained results indi-
cate that hand-crafted division of the image into sub-
regions is questionable, and call for an learning-based
approach.

3.6. Investigation of the regularization terms

The proposed model (Eq. 7) comes with two regular-
ization terms associated with the pooling weights, each
imposing di↵erent assumptions on the pooling regions.
Hence, it is interesting to investigate their role in the
classification task by considering all possible subsets of
{l2, smooth}, where “l2” and “smooth” refer to ||W ||2
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respectively.

Table 3 shows our results on CIFAR-10. We choose
a dictionary size of 200 for these experiments, so that
we can evaluate di↵erent regularization terms with-
out any approximations. We conclude that the spatial
smoothness regularization term is crucial to achieve a
good predictive performance of our method whereas
the l2-norm term can be left out, and thus also re-
ducing the number of hyper-parameters. Based on the
cross-validation results (second column of Table 3), we
select this setting for further experiments.

Regularization CV Acc. Test Acc.
free 68.48% 69.59%
l2 67.86% 68.39%
smooth 73.36% 73.96%
l2 + smooth 70.42% 70.32%

Table 3. We investigate the impact of the regularization
terms on the CIFAR-10 dataset with dictionary size equals
to 200. Term “free” denotes the objective function with-
out the l2-norm and smoothness regularization terms. The
cross-validation accuracy and test accuracy are shown.
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regularization pooling weights
dataset: CIFAR-10 ; dictionary size: 200

Coates (no learn.)

l2

smooth

smooth & l2
dataset: CIFAR-10 ; dictionary size: 1600

smooth & batches
dataset: CIFAR-100 ; dictionary size: 1600

smooth & batches

Table 2. Visualization of di↵erent pooling strategies obtained for di↵erent regularizations, datasets and dictionary size.
Every column shows the regions from two di↵erent coordinates of the codes. First row presents the initial configuration
also used in standard hand-crafted pooling methods. Brighter regions denote larger weights.

3.7. Experiments on the CIFAR-100 dataset

Although the main body of work is conducted on
the CIFAR-10 dataset, we also investigate how the
model performs on and generalizes to the much more
demanding CIFAR-100 dataset with 100 classes and
fewer images per category. We use the regulariza-
tion terms as well as the hyper-parameters as deter-
mined via cross-validation in the previous results on
the CIFAR-10 dataset. Our model with the spatial
smoothness regularization term on the 40 dimensional
batches achieves 56.29%. To the our best knowledge,
this is the state-of-the-art performance on this dataset,
outperforming Jia & Huang (2011) by 1.41%, and the
baseline by 4.63%.

Method Dict. size Features Acc.
Jia 1600 6400 54.88%
Coates 1600 6400 51.66%
Our (batches) 1600 6400 56.29%

Table 4. The classification accuracy on CIFAR-10, where
our method is compared with the Coates & Ng (2011) and
Jia & Huang (2011).

3.8. Transfer of the pooling regions between
datasets

Beyond the standard classification task, we also exam-
ined whether the learnt pooling regions can be trans-

ferred between both datasets. In this scenario the
pooling regions are first trained on the source dataset
and then used on the target dataset to train a new clas-
sifier. We use dictionary of 1600 with 40-dimensional
batches. Our results in Table 5 suggest that the learnt
pooling regions are indeed transferable between those
datasets. While we observe a decrease in performance
when learning the pooling strategy on the less diverse
CIFAR-10 dataset, we do see improvements for learn-
ing on the richer CIFAR-100 dataset. We arrive at
a test accuracy of 80.35% which is an additional im-
provement of 0.75% and 0.18% over our best result
(batch-based approximation) and Jia & Huang (2011)
respectively.

Source Target Accuracy
CIFAR-10 CIFAR-100 52.86%
CIFAR-100 CIFAR-10 80.35%

Table 5. We train the pooling regions on the ’Source’
dataset. Next, we use such regions to train the classifier on
the ’Target’ dataset where the test accuracy is reported.

3.9. Visualization and analysis of pooling
strategies

Table 2 visualizes di↵erent pooling strategies investi-
gated in this paper. The first row shows the widely
used rectangular spatial division of the image. The
other visualizations correspond to pooling weights dis-
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Figure 1: Figure 1(a) shows accuracy of the classification with respect to the number of dictionary elements on
smaller dictionaries. Figure 1(b) shows the accuracy of the classification for bigger dictionaries when batches,
and the redundant batches were used. Experiments are done on CIFAR-10.

smaller. Our method is about 2.5% and 1.88% better than the baseline for 400 and 800 dictionary
elements respectively.

3.4 Scaling up to sizable dictionaries

In subsection 2.4 we have discussed the possibility of dividing the codes into low dimensional
batches and learning the pooling regions on those. In the following experiments we use batches
with 40 coordinates extracted from the original code, as those fit conveniently into the memory of a
single, standard machine (about 5 Gbytes for the main data) and can all be trained in parallel.

Besides a reduction in the memory requirements, the batches have shown multiple benefits in prac-
tice due to smaller number of parameters. We need less computations per iterations as well as
observe faster convergence. Figure 1(b) shows the classification performance for larger dictionar-
ies where we examined the full model [Our], the baseline [Coates], random pooling regions (de-
scribed in subsection 3.5), bag of features, and two possible approximation - the batched model
[Our (batches)], and the redundantly batched model [Our (redundant batches)].

Our test results are presented in Table 1. When comparing our full model to the approximated
versions with batches for dictionaries of size 200, 400 and 800, we observe that there is almost no
drop in performance and we even slightly improve for the bigger dictionaries. We attribute this to the
better conditioned learning problem of the smaller codes within one batch. With an accuracy for the
batched model of 79.6% we outperform the Coates baseline by 1.7%. Interestingly, we gain another
small improvement to 80.02% by adding redundant batches which amounts to a total improvement
of 2.12% compared to the baseline. Our method performs comparable to the pooling strategy of
Jia and Huang [2011] which uses more restrictive assumptions on the pooling regions and employs
feature selection algorithm.

Method Dict. size Features Acc.
Jia 1600 6400 80.17%
Coates 1600 6400 77.9%
Our (batches) 1600 6400 79.6%
Our (redundant) 1600 12800 80.02%

Table 1: Comparison of our methods against the baseline [Coates and Ng, 2011] and Jia and Huang [2011] with
respect to the dictionary size, number of features and the test accuracy on CIFAR-10.

To the best of our knowledge Ciresan et al. [2012] achieves the best results on the CIFAR-10 dataset
with an accuracy 88.79% with a method based on a deep architecture – different type of architecture
to the one that we investigate in our study.
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Figure 3. Our dataset contains 8 sports event classes: rowing (250 im-
ages), badminton (200 images), polo (182 images), bocce (137 images),
snowboarding (190 images), croquet (236 images), sailing (190 images),
and rock climbing (194 images). Our examples here demonstrate the com-
plexity and diversity of this highly challenging dataset.

4. Learning the Model
The goal of learning is to update the parameters

{ψ, ρ, π, λ, θ, β} in the hierarchical model (Fig.2). Given
the event E, the scene and object images are assumed in-
dependent of each other. We can therefore learn the scene-
related and object-related parameters separately.

We use Variational Message Passing method to update
parameters {ψ, ρ, θ}. Detailed explanation and update
equations can be found in [6]. For the object branch of the
model, we learn the parameters {π, λ, β} via Gibbs sam-
pling [10] of the latent topics. In such a way, the topic sam-
pling and model learning are conducted iteratively. In each

round of the Gibbs sampling procedure, the object topic
will be sampled based on p(zi|z\i, A,G,O), where z\i de-
notes all topic assignment except the current one. Given the
Dirichlet hyperparameters ξ and α, the distribution of topic
given object p(z|O) and the distribution of appearance and
geometry words given topic p(A,G|z) can be derived by
using the standard Dirichlet integral formulas:

p(z = i|z\i, O = j) =
cij + ξ

Σicij + ξ × H
(12)

p((A,G) = k|z\i, z = i) =
nki + ϕ

Σknki + ϕ × VO
(13)

where cij is the total number of patches assigned to object
j and object topic i, while nki is the number of patch k as-
signed to object topic i. H is the number of object topics,
which is set to some known, constant value. VO is the object
codebook size. And a patch is a combination of appearance
(A) and geometry (G) features. By combining Eq.12 and
13, we can derive the posterior of topic assignment as

p(zi|z\i, A, G, O) = p(z = i|z\i, O) ×
p((A,G) = k|z\i, z = i) (14)

Current topic will be sampled from this distribution.

5. System Implementation
Our goal is to extract as much information as possible

out of the event images, most of which are cluttered, filled
with objects of variable sizes and multiple categories. At
the feature level, we use a grid sampling technique similar
to [6]. In our experiments, the grid size is 10 × 10. A patch
of size 12× 12 is extracted from each of the grid centers. A
128-dim SIFT vector is used to represent each patch [13].
The poses of the objects from the same object class change
significantly in these events. Thus, we use rotation invari-
ant SIFT vector to better capture the visual similarity within
each object class. A codebook is necessary in order to rep-
resent an image as a sequence of appearance words. We
build a codebook of 300 visual words by applying K-means
for the 200000 SIFT vectors extracted from 30 randomly
chosen training images per event class. To represent the ge-
ometry/layout information, each pixel in an image is given
a geometry label using the codes provided by [9]. In this pa-
per, only three simple geometry/layout properties are used.
They are: ground plane, vertical structure and sky at infin-
ity. Each patch is assign a geometry membership by the
major vote of the pixels within.

6. Experiments and Results
6.1. Dataset

As the first attempt to tackle the problem of static event
recognition, we have no existing dataset to use and compare
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Figure 1: Figure 1(a) shows accuracy of the classification with respect to the number of dictionary elements on
smaller dictionaries. Figure 1(b) shows the accuracy of the classification for bigger dictionaries when batches,
and the redundant batches were used. Experiments are done on CIFAR-10.

smaller. Our method is about 2.5% and 1.88% better than the baseline for 400 and 800 dictionary
elements respectively.

3.4 Scaling up to sizable dictionaries

In subsection 2.4 we have discussed the possibility of dividing the codes into low dimensional
batches and learning the pooling regions on those. In the following experiments we use batches
with 40 coordinates extracted from the original code, as those fit conveniently into the memory of a
single, standard machine (about 5 Gbytes for the main data) and can all be trained in parallel.

Besides a reduction in the memory requirements, the batches have shown multiple benefits in prac-
tice due to smaller number of parameters. We need less computations per iterations as well as
observe faster convergence. Figure 1(b) shows the classification performance for larger dictionar-
ies where we examined the full model [Our], the baseline [Coates], random pooling regions (de-
scribed in subsection 3.5), bag of features, and two possible approximation - the batched model
[Our (batches)], and the redundantly batched model [Our (redundant batches)].

Our test results are presented in Table 1. When comparing our full model to the approximated
versions with batches for dictionaries of size 200, 400 and 800, we observe that there is almost no
drop in performance and we even slightly improve for the bigger dictionaries. We attribute this to the
better conditioned learning problem of the smaller codes within one batch. With an accuracy for the
batched model of 79.6% we outperform the Coates baseline by 1.7%. Interestingly, we gain another
small improvement to 80.02% by adding redundant batches which amounts to a total improvement
of 2.12% compared to the baseline. Our method performs comparable to the pooling strategy of
Jia and Huang [2011] which uses more restrictive assumptions on the pooling regions and employs
feature selection algorithm.

Method Dict. size Features Acc.
Jia 1600 6400 80.17%
Coates 1600 6400 77.9%
Our (batches) 1600 6400 79.6%
Our (redundant) 1600 12800 80.02%

Table 1: Comparison of our methods against the baseline [Coates and Ng, 2011] and Jia and Huang [2011] with
respect to the dictionary size, number of features and the test accuracy on CIFAR-10.

To the best of our knowledge Ciresan et al. [2012] achieves the best results on the CIFAR-10 dataset
with an accuracy 88.79% with a method based on a deep architecture – different type of architecture
to the one that we investigate in our study.
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CIFAR-10 dataset

Event recognition with object banks

regularization pooling weights
dataset: CIFAR-10 ; dictionary size: 200

Coates (no learn.)

l2

smooth

smooth & l2
dataset: CIFAR-10 ; dictionary size: 1600

smooth & batches
dataset: CIFAR-100 ; dictionary size: 1600

smooth & batches

Table 2: Visualization of different pooling strategies obtained for different regularizations, datasets and dic-
tionary size. Every column shows the regions from two different coordinates of the codes. First row presents
the initial configuration also used in standard hand-crafted pooling methods. Brighter regions denote larger
weights.

3.5 Random pooling regions

Our investigation also includes results using random pooling regions where the weights for the
parameterized operator (Eq. 2) were sampled from normal distribution with mean 0.5 and standard
deviation 0.1, that is w

l

j

⇠ N (0.5, 0.1) for all l. This notion of the random pooling differs from
the Jia et al. [2012] where random selection of rectangles is used. The experiments show that the
random pooling regions can compete with the standard spatial pooling (Figure 1(a) and 1(b)) on the
CIFAR-10 dataset, and suggest that random projection can still preserve some spatial information.
This is especially visible in the regime of bigger dictionaries where the difference is only 1.09%.
The obtained results indicate that hand-crafted division of the image into subregions is questionable,
and call for a learning-based approach.

3.6 Investigation of the regularization terms

Our model (Eq. 5) comes with two regularization terms associated with the pooling weights, each
imposing different assumptions on the pooling regions. Hence, it is interesting to investigate their
role in the classification task by considering all possible subsets of {l2, smooth}, where “l2” and
“smooth” refer to ||W ||2

l2
and

�
||r

x

W ||2
l2
+ ||r

y

W ||2
l2

�
respectively.

Table 3 shows our results on CIFAR-10. We choose a dictionary size of 200 for these experiments,
so that we can evaluate different regularization terms without any approximations. We conclude that
the spatial smoothness regularization term is crucial to achieve a good predictive performance of
our method whereas the l2-norm term can be left out, and thus also reducing the number of hyper-
parameters. Based on the cross-validation results (second column of Table 3), we select this setting
for further experiments.

Regularization CV Acc. Test Acc.
free 68.48% 69.59%
l2 67.86% 68.39%
smooth 73.36% 73.96%
l2 + smooth 70.42% 70.32%

Table 3: We investigate the impact of the regularization terms on the CIFAR-10 dataset with dictionary size
equals to 200. Term “free” denotes the objective function without the l2-norm and smoothness regularization
terms. The cross-validation accuracy and test accuracy are shown.
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