Learning Smooth Pooling Regions for Visual Recognition

Mateusz Malinowski and Mario Fritz

Motivation

- State-of-the-art object recognition algorithms are based on histograms of feature representations
- Spatial Pooling, in order to preserve some spatial information, aggregates statistics locally
- Current Spatial Pooling schemes are hand-crafted (e.g. SPM)
- Are such spatial regions optimal?
- Can we train jointly both the classifier and spatial regions?
- What assumptions on the Spatial Pooling scheme are needed to achieve best performance?

Pooling units

Our method

- Parameterized pooling operator
- Joint training of classifier and pooling regions

Results

Conclusion

- Evaluation on Object and Event recognition tasks
- Hand-crafted Spatial Pooling as a baseline [4, 5]
- Strong improvement over hand-crafted Spatial Pooling [4, 5] 3% on Event and up to 10% on Object recognition
- State-of-the-Art on CIFAR-100 given SPM

- Importance of learnt Spatial Pooling regions
- Scalable algorithm for larger dictionaries
- Discovery of new pooling schemes
- Importance of Spatial Smoothness prior
- Applicable to sum- and max-pooling

CIFAR-10 dataset

regularization				pooling	weights			
dataset: CIFAR-10; dictionary size: 200								
Coates (no learn.)								
12	54				200		200	242
smooth								2
smooth & 12								

Learnt pooling regions

•		1	. 000
	12 + smooth	70.42%	70.32%
	smooth	73.36%	73.96%
	12	67.86%	68.39%
	free	68.48%	69.59%
	Regularization	CV Acc.	Test Acc.

CIFAR-10; dictionary size 200

	UIUC sports
Object Banks + SPM [5]	76.3%
Object Banks + our method	79.4%

Event recognition with object banks

Method	Dict. size	Features	Acc.
Jia	1600	6400	80.17%
Coates	1600	6400	77.9%
Our (batches)	1600	6400	79.6%
Our (redundant)	1600	12800	80.02%

Method	Dict. size	Features	Acc.
Jia	1600	6400	54.88%
Coates	1600	6400	$\boxed{51.66\%}$
Our (batches)	1600	6400	56.29%

Source	Target	Acc.		
CIFAR-10	CIFAR-100	$\boxed{52.86\%}$		
CIFAR-100	CIFAR-10	$\mid 80.35\% \mid$		
Results of transfer of				

Object recognition on CIFAR-10

Object recognition on CIFAR-100

nesults of framsier of learnt pooling regions

1.Lazebnik, S., Schmid, C., Ponce, J.: Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories. CVPR 2006. 2. Yang, J., Yu, K., Gong Y., Huang T.: Linear spatial pyramid matching using sparse coding for image classification. CVPR 2009. 3.Jia, Y., Huang, C.: Beyond spatial pyramid: Receptive field learning for pooled image features. NIPS Workshop on Deep Learning 2011. 4. Coates, A., Ng, A.: The importance of encoding versus training with sparse coding and vector quantization. ICML 2011. 5.Li, L., Su. H., Xing E., Fei-Fei, L.: Object Bank: A high-level image representation for scene classification & semantic feature sparsification. NIPS 2010.

