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CIFAR-10 and CIFAR-10 UIUC sports
» Evaluation on Object and Event recognition tasks » Importance of learnt Spatial Pooling regions
» Hand-crafted Spatial Pooling as a baseline™” - Scalable algorithm for larger dictionaries
- Strong improvement over hand-crafted Spatial Pooling™® < Discovery of new pooling schemes
3% on Event and up to 10% on Object recognition » Importance of Spatial Smoothness prior
» State-of-the-Art on CIFAR-100 given SPM » Applicable to sum- and max-pooling
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