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• Stronger	
  vision	
  and	
  language	
  techniques	
  are	
  being	
  developed	
  
• Can	
  machines	
  answer	
  on	
  natural	
  questions	
  about	
  real-­‐world?	
  
• A	
  holistic	
  and	
  open-­‐ended	
  test	
  that	
  resembles	
  the	
  famous	
  Turing	
  Test	
  
• Understanding	
  human	
  intentions	
  in	
  the	
  human-­‐machine	
  communication	
  
• Less	
  subjective	
  than	
  Turing	
  Test	
  in	
  the	
  interpretation	
  of	
  the	
  answers	
  
• Cheaper	
  annotations	
  as	
  logical	
  forms	
  are	
  not	
  required	
  

• Benchmarking	
   holistic	
   tasks	
   that	
   test	
   chain	
   of	
   perception,	
  
representation	
  and	
  deduction	
  
• Maintain	
  tractable	
  annotation	
  effort	
  
• Shape	
  a	
  benchmark	
  that	
  applies	
  to	
  many	
  approaches:	
   
Don’t	
  impose	
  strong	
  constraints	
  on	
  the	
  methods

Motivation

• Introduce	
  a	
  holistic	
  Visual	
  Turing	
  Challenge	
  
• Discuss	
  associated	
  challenges	
  in	
  Vision	
  and	
  NLP	
  
• Introduce	
  and	
  discuss	
  performance	
  measures	
  
• Social	
  consensus	
  to	
  benchmark	
  different	
  architectures

Overview

• Vision	
  and	
  language	
  
• Joint	
  treatment	
  of	
  both	
  modalities	
  
• 	
  	
  ‘Which	
  hand	
  of	
  the	
  teacher	
  is	
  on	
  her	
  chin?’	
  
• Ideally	
  closing	
  the	
  loop	
  for	
  improved	
  perception	
  

• Richness	
  of	
  the	
  concepts	
  
• Object	
  categories	
  
• Attributes	
  (e.g.	
  genders,	
  colors,	
  states)	
  
• Unknown	
  human	
  notion	
  of	
  spatial	
  relations	
  	
  

• Ambiguities	
  in	
  the	
  reference	
  frame	
  
• Object-­‐centric	
  
• Observer-­‐centric	
  
• World-­‐centric	
  

• Contextualization	
  of	
  the	
  concepts	
  
• 	
  	
  White	
  in	
  ‘white	
  elephant’	
  and	
  ‘white	
  snow’	
  

• Common	
  sense	
  knowledge	
  
• Narrows	
  down	
  likely	
  options	
  or	
  locations	
  
• ‘Which	
  object	
  on	
  the	
  table	
  is	
  used	
  for	
  cutting?’	
  
• ‘What	
  is	
  in	
  front	
  of	
  scissors?’	
  

• DeWining	
  a	
  benchmark	
  
• End-­‐to-­‐end	
  system	
  that	
  learns	
  from	
  textual	
  question-­‐answer	
  pairs	
  
• Internal	
  representation	
  of	
  architectures	
  is	
  irrelevant	
  
• Easy	
  to	
  collect	
  a	
  dataset	
  
• Hard	
  to	
  deWine	
  automatic	
  performance	
  measures

Challenges

• NYU-­‐Depth	
  V2	
  dataset	
  with	
  textual	
  question-­‐answer	
  pairs	
  
• 1449	
  	
  RGBD	
  indoor	
  images	
  	
  
• 12,5k	
  question-­‐answer	
  pairs	
  
• Annotations	
  are:	
  colors,	
  numbers,	
  objects	
  
• Subjectivity	
  is	
  prominent	
  in	
  the	
  dataset	
  [1]	
  
• About	
  9	
  question-­‐answer	
  pairs	
  per	
  image	
  
• Object’s	
  category	
  occurs	
  4	
  times	
  in	
  training	
  set	
  

DAQUAR

QA: (what is beneath the candle holder,  
decorative plate)
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.

QA: (what is in front of the wall divider?, 
cabinet)  
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)
QA2:(How many doors are in the image?, 5)
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

QA: (what is behind the table?, sofa)
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view
QA: (how many lights are on?, 6)
Moreover, some questions require detection 
of states ‘light on or off’  

Q: what is at the back side of the sofas?
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)

QA2: (what is in front of the curtain?, 
guitar)

Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.

QA: (How many drawers are there?, 8)
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.

QA: (How many doors are open?, 1)
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.
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• Unconstraint	
  questions	
  and	
  deWined	
  but	
  large	
  answer	
  space	
  
• Vision	
  and	
  language	
  
• Many	
  categories	
  with	
  fuzzy	
  semantic	
  boundaries	
  
• 	
  	
  Nouns	
  such	
  as	
  tool,	
  night	
  stand,	
  cabinet	
  may	
  refer	
  to	
  the	
  same	
  thing	
  

• Human	
  notion	
  of	
  spatial	
  concepts	
  	
  
• Different	
  reference	
  frames	
  
• Questions	
  of	
  substantial	
  length	
  (10.5	
  words	
  in	
  average)	
  
• Possible	
  language	
  errors	
  

• Common	
  sense	
  knowledge	
  
• Strong	
  non-­‐visual	
  cues	
  for	
  predicting	
  an	
  object	
  
• 	
  	
  ‘Which	
  object	
  on	
  the	
  table	
  is	
  used	
  for	
  cutting?’	
  

• Pragmatism	
  of	
  the	
  question	
  answering	
  task	
  
• Understanding	
  hidden	
  intentions	
  of	
  the	
  questioner	
  
• Grounding	
  of	
  the	
  meaning	
  as	
  a	
  latent	
  sub-­‐goal	
  

Challenges	
  in	
  DAQUAR

• Automatic	
  Evaluation	
  by	
  Design	
  
• Ambiguity	
  
• Cultural	
  bias	
  
• Fined	
  grained	
  categorization	
  
• Reference	
  frame	
  

• ‘Soft’	
  Accuracy 
 

• Lacks	
  of	
  the	
  coverage	
  in	
  the	
  lexical	
  databases	
  
• Further	
  development	
  of	
  the	
  metrics	
  
• Consider	
  many	
  valid	
  human	
  answers	
  
• Interpretation	
  metric	
  
• Maximal	
  score	
  over	
  different	
  human	
  answers	
  

• Consensus	
  metric	
  
• Average	
  over	
  different	
  human	
  answers	
  
• Takes	
  an	
  agreement	
  between	
  human	
  responses	
  into	
  account	
  

• Experimental	
  scenarios	
  
• Controlled	
  and	
  open	
  scenarios	
  with	
  another	
  resources	
  available	
  in	
  training

Metrics

Automation: Evaluating answers on such complex tasks as answering on questions requires a quite
deep understanding of natural language, involved concepts and hidden intentions of the questioner.
The ideal but impractical metric would be to manually judge every single answer of every architec-
ture individually. Since this is infeasible we are seeking an automatic approximation so that we can
evaluate different holistic architectures at scale.
Ambiguity: The complex tasks that we are interested in are inherently ambiguous. The ambiguities
stem from cultural bias, different frame of reference and fined grained categorization. This implies
that multiple interpretations of a question are possible and hence many correct answers.
Coverage: Since there are multiple ways of expressing the same concept, the automatic performance
metric should take the equivalence class among the answers into the consideration by assigning sim-
ilar scores to all members of the same class. There are attempts to alleviate this issue via defining
similarity scores [62] over the lexical databases [63, 64]. These approaches, however, lacks of cov-
erage: we cannot assign a similarity between the terms that are not represented in the structure.

WUPS scores We exemplify the aforementioned requirements by illustrating the WUPS score -
an automatic metric that quantifies performance of the holistic architectures proposed by [27]. This
metric is motivated by the development of a ’soft’ generalization of accuracy that takes ambiguities
of different concepts into account via the set membership measure µ:
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where for each i-th question, Ai and T i are the answers produced by the architecture and human re-
spectively, and they are represented as bags of words. The authors of [27] have proposed using WUP
similarity [62] as the membership measure µ in the WUPS score. Such choice of µ suffers from the
aforementioned coverage problem and the whole metric takes only one human interpretation of the
question into account.

Future directions for defining metrics Recent work provides several directions towards improv-
ing scores. To deal with ambiguities that stem from different readings of the same question we are
collecting more human answers per question and we propose, based on that, two generalizations of
WUPS score. The first, we call Interpretation Metric, runs Eq. 1 over many human answers and
takes the maximal score, so that the machine answer is high if it is similar to at least one human
answer. However, with many human answers, we can also rank higher the machine answers that
are ’socially agreeable’ by measuring if they agree with most human answers. This can be done by
averaging over multiple human answers. We call such second extension, Consensus Metric. The
problem with coverage can be potentially alleviated with vector based representations [12] of the
answers. Although in this case the coverage issues are less problematic, we understand the con-
cerns that such score is dependent on the training data used to build such representation. On the
other hand, due to abundance of textual data and recent improvements of vector based approaches
[12, 65], we consider it as a valid alternative to similarities that are based on ontologies.

Experimental scenarios In many cases, success on challenging learning problems has been ac-
celerated by use of external data in the training, e.g. in object detection [3]. We believe that a Visual
Turing challenge should consists of a sub-task with a prohibited use of auxiliary data to understand
how the holistic learners generalize from limited and challenging data in a more established setup.
On the other hand we should not limit ourselves to such artificial restrictions in building next gen-
eration of the holistic learners. Therefore open sub-tasks with a permissible use of another sources
in the training have to be stated, including: additional vision and language resources, synthetic data
and curated questions.

5 Summary
The goal of this contribution is to sparkle the discussions about benchmarking holistic architectures
on complex and more open tasks. We identify particular challenges that holistic tasks should ex-
hibit and exemplify how they are manifested in a recent question answering challenge [27]. To
judge competing architectures and measure the progress on the task, we suggest several directions
to further improve existing metrics, and discuss different experimental scenarios.
Acknowledgement: We would like to thank Michael Stark for his comments on the draft.
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• Visual	
   Turing	
   Challenge	
   provides	
   a	
   rich	
   set	
   of	
   challenges	
   in	
  
Vision	
   and	
   NLP	
   -­‐	
   yet	
   annotation	
   and	
   evaluation	
   remain	
  
tractable	
  

• Automatic	
  benchmarking,	
  but	
  coverage	
  can	
  be	
  an	
  issue	
  
• Cultural	
   bias,	
   changes	
   in	
   the	
   reference	
   frame,	
   naming	
  
ambiguities,	
  and	
  unknown	
  spatial	
  relation	
  are	
  inherent	
  to	
  the	
  
challenge 

Conclusions

• Machine	
  perception	
  
• Machine	
  language	
  understanding	
  
• Grounding	
  
• Image-­‐to-­‐sentence	
  alignment	
  
• Question-­‐answering	
  problem

Related	
  work

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I
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are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v
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i
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i

� ✏ ·
⌧
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��
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Di

w
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where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
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Environment d Know. Base �

mug(1)
mug(3)
blue(1)
table(4)
on-rel(1, 4)
on-rel(3, 4)
...

(a) Perception fper produces a logical knowl-
edge base � from the environment d using an
independent classifier for each category and
relation.

Language z

“blue mug on table”

Logical form `

�x.9y.blue(x) ^
mug(x) ^
on-rel(x, y) ^
table(y)

(b) Semantic parsing fprs

maps language z to a log-
ical form `.

Grounding: g = {(1, 4)}, Denotation: � = {1}

{1}

{1}

blue(x)

{1, 3}

mug(x)

{(1, 4), (3, 4)}

{(1, 4), (3, 4)}

on-rel(x, y)

{4}

table(y)

(c) Evaluation feval evaluates a logical form ` on a
logical knowledge base � to produce a grounding g

and denotation �.

Figure 2: Overview of Logical Semantics with Perception (LSP).

et al., 2010; Dzifcak et al., 2009; Cantrell et al.,
2010; Chen and Mooney, 2011). All of this work as-
sumes that the formal environment representation is
given, while LSP learns to produce this formal rep-
resentation from raw sensor input.

Most similar to LSP is work on simultaneously
understanding natural language and perceiving the
environment. This problem has been addressed in
the context of robot direction following (Kollar et
al., 2010; Tellex et al., 2011) and visual attribute
learning (Matuszek et al., 2012). However, this
work is less semantically expressive than LSP and
trained using more supervision. The G3 model (Kol-
lar et al., 2010; Tellex et al., 2011) assumes a one-
to-one mapping from noun phrases to entities and
is trained using full supervision, while LSP allows
one-to-many mappings from noun phrases to entities
and can be trained using minimal annotation. Ma-
tuszek et al. (2012) learns only one-argument cate-
gories (“attributes”) and requires a fully supervised
initial training phase. In contrast, LSP models two-
argument relations and allows for weakly supervised
supervised training throughout.

3 Logical Semantics with Perception

Logical Semantics with Perception (LSP) is a model
for grounded language acquisition. LSP accepts as
input a natural language statement and an environ-
ment and outputs the objects in the environment de-
noted by the statement. The LSP model has three
components: perception, parsing and evaluation (see
Figure 2). The perception component constructs
logical knowledge bases from low-level feature-
based representations of environments. The pars-
ing component semantically parses natural language

into lambda calculus queries against the constructed
knowledge base. Finally, the evaluation compo-
nent deterministically executes this query against the
knowledge base to produce LSP’s output.

The output of LSP can be either a denotation or
a grounding. A denotation is the set of entity refer-
ents for the phrase as a whole, while a grounding is
the set of entity referents for each component of the
phrase. The distinction between these two outputs is
shown in Figure 1b. In this example, the denotation
is the set of “things to the right of the blue mug,”
which does not include the blue mug itself. On the
other hand, the grounding includes both the refer-
ents of “things” and “blue mug.” Only denotations
are used during training, so we ignore groundings in
the following model description. However, ground-
ings are used in our evaluation, as they are a more
complete description of the model’s understanding.

Formally, LSP is a linear model f that predicts a
denotation � given a natural language statement z in
an environment d. As shown in Figure 3, the struc-
ture of LSP factors into perception (f

per

), semantic
parsing (f

prs

) and evaluation (f
eval

) components us-
ing several latent variables:

f(�,�, `, t, z,d; ✓) = f
per

(�, d; ✓
per

)+

f
prs

(`, t, z; ✓
prs

) + f
eval

(�,�, `)

LSP assumes access to a set of predicates that
take either one argument, called categories (c 2 C)
or two arguments, called relations (r 2 R).2 These
predicates are the interface between LSP’s percep-
tion and parsing components. The perception func-
tion f

per

takes an environment d and produces a log-
2The set of predicates are derived from our training data.

See Section 5.3.
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Figure 1: Our model takes a dataset of
images and their sentence descriptions
and learns to associate their fragments.
In images, fragments correspond to ob-
ject detections and scene context. In sen-
tences, fragments consist of typed de-
pendency tree [1] relations.

number of images and sentences. Farhadi et al. [5] learn a common meaning space, but their method
is limited to representing both images and sentences with a single triplet of (object, action, scene).
Zitnick et al. [14] use a Conditional Random Field to reason about spatial relationships in cartoon
scenes and their relation to natural language descriptions. Finally, joint models of language and
perception have also been explored in robotics settings [15].

Multimodal Representation Learning. Our approach falls into a general category of learning
from multi-modal data. Several probabilistic models for representing joint multimodal probability
distributions over images and sentences have been developed, using Deep Boltzmann Machines [16],
log-bilinear models [17], and topic models [18, 19]. Ngiam et al. [20] described an autoencoder
that learns audio-video representations through a shared bottleneck layer. More closely related to
our task and approach is the work of Frome et al. [21], who introduced a model that learns to
map images and words to a common semantic embedding with a ranking cost. Adopting a similar
approach, Socher et al. [22] described a Dependency Tree Recursive Neural Network that puts
entire sentences into correspondence with visual data. However, these methods reason about the
image only on the global level using a single, fixed-sized representation from the top layer of a
Convolutional Neural Network as a description for the entire image. In contrast, our model explicitly
reasons about objects that make up a complex scene.

Neural Representations for Images and Natural Language. Our model is a neural network
that is connected to image pixels on one side and raw 1-of-k word representations on the other.
There have been multiple approaches for learning neural representations in these data domains. In
Computer Vision, Convolutional Neural Networks (CNNs) [23] have recently been shown to learn
powerful image representations that support state of the art image classification [24, 25, 26] and
object detection [27, 28]. In language domain, several neural network models have been proposed
to learn word/n-gram representations [29, 30, 31, 32, 33, 34], sentence representations [35] and
paragraph/document representations [36].

3 Proposed Model

Learning and Inference. Our task is to retrieve relevant images given a sentence query, and con-
versely, relevant sentences given an image query. We train our model on a set of N images and N

corresponding sentences that describe their content (Figure 2). Given this set of correspondences,
we learn the weights of a neural network with a structured loss to output a high score when a com-
patible image-sentence pair is fed through the network, and low score otherwise. Once the training is
complete, all training data is discarded and the network is evaluated on a withheld set of images and
sentences. The evaluation scores all image-sentence pairs in the test set, sorts the images/sentences
in order of decreasing score and records the location of a ground truth result in the list.

Fragment Embeddings. Our core insight is that images are complex structures that are made
up of multiple entities that the sentences make explicit references to. We capture this intuition
directly in our model by breaking down both images and sentences into fragments and reason about
their alignment. In particular, we propose to detect objects as image fragments and use sentence
dependency tree relations [1] as sentence fragments (Figure 2).

Objective. We will compute the representation of both image and sentence fragments with a neural
network, and interpret the top layer as high-dimensional vectors embedded in a common multi-
modal space. We will think of the inner product between these vectors as a fragment compatibility
score, and compute the global image-sentence score as a fixed function of the scores of their respec-
tive fragments. Intuitively, an image-sentence pair will obtain a high global score if the sentence
fragments can each be confidently matched to some fragment in the image. Finally, we will learn
the weights of the neural networks such that the true image-sentence pairs achieve a score higher
(by a margin) than false image-sentence pairs.
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Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.
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, R
d

)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td

, and
relations R

j

that define the relationship between the current node and a subtree T
j

.

In the predictions, we use a log-linear distribution P (T |Q) / exp(✓T�(Q, T )) over the logical
forms with a feature vector � measuring compatibility between Q and T and parameters ✓ learnt
from training data. Every component �

j

is the number of times that a specific feature template
occurs in (Q, T ). We use the same templates as [1]: string triggers a predicate, string is under a
relation, string is under a trace predicate, two predicates are linked via relation and a predicate has
a child. The model learns by alternating between searching over a restricted space of valid trees
and gradient descent updates of the model parameters ✓. We use the Datalog inference engine to
produce the answers from the latent logical forms. The linguistic phenomena such as superlatives
and negations are handled by the logical forms and the inference engine. For a detailed exposition,
we refer the reader to [1].

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still corre-
sponds to the single world approach in our overview Figure 1. However our world is now popu-
lated with “facts” derived from automatic, semantic image segmentations S . For this purpose, we
build the world by running a state-of-the-art semantic segmentation algorithm [15] over the im-
ages and collect the recognized information about objects such as object class, 3D position, and
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(a) Sampled worlds.
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(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds where only segments of the class ’person’ are shown. In the
clock-wise order: original picture, most confident world, and three possible worlds (gray-scale values denote
the class confidence). Although, at first glance the most confident world seems to be a reasonable approach,
our experiments show opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.
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