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• Stronger	  vision	  and	  language	  techniques	  are	  being	  developed	  
• Can	  machines	  answer	  on	  natural	  questions	  about	  real-‐world?	  
• A	  holistic	  and	  open-‐ended	  test	  that	  resembles	  the	  famous	  Turing	  Test	  
• Understanding	  human	  intentions	  in	  the	  human-‐machine	  communication	  
• Less	  subjective	  than	  Turing	  Test	  in	  the	  interpretation	  of	  the	  answers	  
• Cheaper	  annotations	  as	  logical	  forms	  are	  not	  required	  

• Benchmarking	   holistic	   tasks	   that	   test	   chain	   of	   perception,	  
representation	  and	  deduction	  
• Maintain	  tractable	  annotation	  effort	  
• Shape	  a	  benchmark	  that	  applies	  to	  many	  approaches:	   
Don’t	  impose	  strong	  constraints	  on	  the	  methods

Motivation

• Introduce	  a	  holistic	  Visual	  Turing	  Challenge	  
• Discuss	  associated	  challenges	  in	  Vision	  and	  NLP	  
• Introduce	  and	  discuss	  performance	  measures	  
• Social	  consensus	  to	  benchmark	  different	  architectures

Overview

• Vision	  and	  language	  
• Joint	  treatment	  of	  both	  modalities	  
• 	  	  ‘Which	  hand	  of	  the	  teacher	  is	  on	  her	  chin?’	  
• Ideally	  closing	  the	  loop	  for	  improved	  perception	  

• Richness	  of	  the	  concepts	  
• Object	  categories	  
• Attributes	  (e.g.	  genders,	  colors,	  states)	  
• Unknown	  human	  notion	  of	  spatial	  relations	  	  

• Ambiguities	  in	  the	  reference	  frame	  
• Object-‐centric	  
• Observer-‐centric	  
• World-‐centric	  

• Contextualization	  of	  the	  concepts	  
• 	  	  White	  in	  ‘white	  elephant’	  and	  ‘white	  snow’	  

• Common	  sense	  knowledge	  
• Narrows	  down	  likely	  options	  or	  locations	  
• ‘Which	  object	  on	  the	  table	  is	  used	  for	  cutting?’	  
• ‘What	  is	  in	  front	  of	  scissors?’	  

• DeWining	  a	  benchmark	  
• End-‐to-‐end	  system	  that	  learns	  from	  textual	  question-‐answer	  pairs	  
• Internal	  representation	  of	  architectures	  is	  irrelevant	  
• Easy	  to	  collect	  a	  dataset	  
• Hard	  to	  deWine	  automatic	  performance	  measures

Challenges

• NYU-‐Depth	  V2	  dataset	  with	  textual	  question-‐answer	  pairs	  
• 1449	  	  RGBD	  indoor	  images	  	  
• 12,5k	  question-‐answer	  pairs	  
• Annotations	  are:	  colors,	  numbers,	  objects	  
• Subjectivity	  is	  prominent	  in	  the	  dataset	  [1]	  
• About	  9	  question-‐answer	  pairs	  per	  image	  
• Object’s	  category	  occurs	  4	  times	  in	  training	  set	  

DAQUAR

QA: (what is beneath the candle holder,  
decorative plate)
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.

QA: (what is in front of the wall divider?, 
cabinet)  
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)
QA2:(How many doors are in the image?, 5)
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

QA: (what is behind the table?, sofa)
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view
QA: (how many lights are on?, 6)
Moreover, some questions require detection 
of states ‘light on or off’  

Q: what is at the back side of the sofas?
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)

QA2: (what is in front of the curtain?, 
guitar)

Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.

QA: (How many drawers are there?, 8)
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.

QA: (How many doors are open?, 1)
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.

[1]	  M.	  Malinowski	  and	  M.	  Fritz	  “A	  Multi-‐World	  Approach	  to	  Question	  Answering	  about	  Real-‐World	  Scenes	  based	  on	  Uncertain	  Input”	  NIPS	  2014

• Unconstraint	  questions	  and	  deWined	  but	  large	  answer	  space	  
• Vision	  and	  language	  
• Many	  categories	  with	  fuzzy	  semantic	  boundaries	  
• 	  	  Nouns	  such	  as	  tool,	  night	  stand,	  cabinet	  may	  refer	  to	  the	  same	  thing	  

• Human	  notion	  of	  spatial	  concepts	  	  
• Different	  reference	  frames	  
• Questions	  of	  substantial	  length	  (10.5	  words	  in	  average)	  
• Possible	  language	  errors	  

• Common	  sense	  knowledge	  
• Strong	  non-‐visual	  cues	  for	  predicting	  an	  object	  
• 	  	  ‘Which	  object	  on	  the	  table	  is	  used	  for	  cutting?’	  

• Pragmatism	  of	  the	  question	  answering	  task	  
• Understanding	  hidden	  intentions	  of	  the	  questioner	  
• Grounding	  of	  the	  meaning	  as	  a	  latent	  sub-‐goal	  

Challenges	  in	  DAQUAR

• Automatic	  Evaluation	  by	  Design	  
• Ambiguity	  
• Cultural	  bias	  
• Fined	  grained	  categorization	  
• Reference	  frame	  

• ‘Soft’	  Accuracy 
 

• Lacks	  of	  the	  coverage	  in	  the	  lexical	  databases	  
• Further	  development	  of	  the	  metrics	  
• Consider	  many	  valid	  human	  answers	  
• Interpretation	  metric	  
• Maximal	  score	  over	  different	  human	  answers	  

• Consensus	  metric	  
• Average	  over	  different	  human	  answers	  
• Takes	  an	  agreement	  between	  human	  responses	  into	  account	  

• Experimental	  scenarios	  
• Controlled	  and	  open	  scenarios	  with	  another	  resources	  available	  in	  training

Metrics

Automation: Evaluating answers on such complex tasks as answering on questions requires a quite
deep understanding of natural language, involved concepts and hidden intentions of the questioner.
The ideal but impractical metric would be to manually judge every single answer of every architec-
ture individually. Since this is infeasible we are seeking an automatic approximation so that we can
evaluate different holistic architectures at scale.
Ambiguity: The complex tasks that we are interested in are inherently ambiguous. The ambiguities
stem from cultural bias, different frame of reference and fined grained categorization. This implies
that multiple interpretations of a question are possible and hence many correct answers.
Coverage: Since there are multiple ways of expressing the same concept, the automatic performance
metric should take the equivalence class among the answers into the consideration by assigning sim-
ilar scores to all members of the same class. There are attempts to alleviate this issue via defining
similarity scores [62] over the lexical databases [63, 64]. These approaches, however, lacks of cov-
erage: we cannot assign a similarity between the terms that are not represented in the structure.

WUPS scores We exemplify the aforementioned requirements by illustrating the WUPS score -
an automatic metric that quantifies performance of the holistic architectures proposed by [27]. This
metric is motivated by the development of a ’soft’ generalization of accuracy that takes ambiguities
of different concepts into account via the set membership measure µ:
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where for each i-th question, Ai and T i are the answers produced by the architecture and human re-
spectively, and they are represented as bags of words. The authors of [27] have proposed using WUP
similarity [62] as the membership measure µ in the WUPS score. Such choice of µ suffers from the
aforementioned coverage problem and the whole metric takes only one human interpretation of the
question into account.

Future directions for defining metrics Recent work provides several directions towards improv-
ing scores. To deal with ambiguities that stem from different readings of the same question we are
collecting more human answers per question and we propose, based on that, two generalizations of
WUPS score. The first, we call Interpretation Metric, runs Eq. 1 over many human answers and
takes the maximal score, so that the machine answer is high if it is similar to at least one human
answer. However, with many human answers, we can also rank higher the machine answers that
are ’socially agreeable’ by measuring if they agree with most human answers. This can be done by
averaging over multiple human answers. We call such second extension, Consensus Metric. The
problem with coverage can be potentially alleviated with vector based representations [12] of the
answers. Although in this case the coverage issues are less problematic, we understand the con-
cerns that such score is dependent on the training data used to build such representation. On the
other hand, due to abundance of textual data and recent improvements of vector based approaches
[12, 65], we consider it as a valid alternative to similarities that are based on ontologies.

Experimental scenarios In many cases, success on challenging learning problems has been ac-
celerated by use of external data in the training, e.g. in object detection [3]. We believe that a Visual
Turing challenge should consists of a sub-task with a prohibited use of auxiliary data to understand
how the holistic learners generalize from limited and challenging data in a more established setup.
On the other hand we should not limit ourselves to such artificial restrictions in building next gen-
eration of the holistic learners. Therefore open sub-tasks with a permissible use of another sources
in the training have to be stated, including: additional vision and language resources, synthetic data
and curated questions.

5 Summary
The goal of this contribution is to sparkle the discussions about benchmarking holistic architectures
on complex and more open tasks. We identify particular challenges that holistic tasks should ex-
hibit and exemplify how they are manifested in a recent question answering challenge [27]. To
judge competing architectures and measure the progress on the task, we suggest several directions
to further improve existing metrics, and discuss different experimental scenarios.
Acknowledgement: We would like to thank Michael Stark for his comments on the draft.
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• Visual	   Turing	   Challenge	   provides	   a	   rich	   set	   of	   challenges	   in	  
Vision	   and	   NLP	   -‐	   yet	   annotation	   and	   evaluation	   remain	  
tractable	  

• Automatic	  benchmarking,	  but	  coverage	  can	  be	  an	  issue	  
• Cultural	   bias,	   changes	   in	   the	   reference	   frame,	   naming	  
ambiguities,	  and	  unknown	  spatial	  relation	  are	  inherent	  to	  the	  
challenge 

Conclusions

• Machine	  perception	  
• Machine	  language	  understanding	  
• Grounding	  
• Image-‐to-‐sentence	  alignment	  
• Question-‐answering	  problem

Related	  work

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
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is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was
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.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
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Environment d Know. Base �

mug(1)
mug(3)
blue(1)
table(4)
on-rel(1, 4)
on-rel(3, 4)
...

(a) Perception fper produces a logical knowl-
edge base � from the environment d using an
independent classifier for each category and
relation.

Language z

“blue mug on table”

Logical form `

�x.9y.blue(x) ^
mug(x) ^
on-rel(x, y) ^
table(y)

(b) Semantic parsing fprs

maps language z to a log-
ical form `.

Grounding: g = {(1, 4)}, Denotation: � = {1}

{1}

{1}

blue(x)

{1, 3}

mug(x)

{(1, 4), (3, 4)}

{(1, 4), (3, 4)}

on-rel(x, y)

{4}

table(y)

(c) Evaluation feval evaluates a logical form ` on a
logical knowledge base � to produce a grounding g

and denotation �.

Figure 2: Overview of Logical Semantics with Perception (LSP).

et al., 2010; Dzifcak et al., 2009; Cantrell et al.,
2010; Chen and Mooney, 2011). All of this work as-
sumes that the formal environment representation is
given, while LSP learns to produce this formal rep-
resentation from raw sensor input.

Most similar to LSP is work on simultaneously
understanding natural language and perceiving the
environment. This problem has been addressed in
the context of robot direction following (Kollar et
al., 2010; Tellex et al., 2011) and visual attribute
learning (Matuszek et al., 2012). However, this
work is less semantically expressive than LSP and
trained using more supervision. The G3 model (Kol-
lar et al., 2010; Tellex et al., 2011) assumes a one-
to-one mapping from noun phrases to entities and
is trained using full supervision, while LSP allows
one-to-many mappings from noun phrases to entities
and can be trained using minimal annotation. Ma-
tuszek et al. (2012) learns only one-argument cate-
gories (“attributes”) and requires a fully supervised
initial training phase. In contrast, LSP models two-
argument relations and allows for weakly supervised
supervised training throughout.

3 Logical Semantics with Perception

Logical Semantics with Perception (LSP) is a model
for grounded language acquisition. LSP accepts as
input a natural language statement and an environ-
ment and outputs the objects in the environment de-
noted by the statement. The LSP model has three
components: perception, parsing and evaluation (see
Figure 2). The perception component constructs
logical knowledge bases from low-level feature-
based representations of environments. The pars-
ing component semantically parses natural language

into lambda calculus queries against the constructed
knowledge base. Finally, the evaluation compo-
nent deterministically executes this query against the
knowledge base to produce LSP’s output.

The output of LSP can be either a denotation or
a grounding. A denotation is the set of entity refer-
ents for the phrase as a whole, while a grounding is
the set of entity referents for each component of the
phrase. The distinction between these two outputs is
shown in Figure 1b. In this example, the denotation
is the set of “things to the right of the blue mug,”
which does not include the blue mug itself. On the
other hand, the grounding includes both the refer-
ents of “things” and “blue mug.” Only denotations
are used during training, so we ignore groundings in
the following model description. However, ground-
ings are used in our evaluation, as they are a more
complete description of the model’s understanding.

Formally, LSP is a linear model f that predicts a
denotation � given a natural language statement z in
an environment d. As shown in Figure 3, the struc-
ture of LSP factors into perception (f

per

), semantic
parsing (f

prs

) and evaluation (f
eval

) components us-
ing several latent variables:

f(�,�, `, t, z,d; ✓) = f
per

(�, d; ✓
per

)+

f
prs

(`, t, z; ✓
prs

) + f
eval

(�,�, `)

LSP assumes access to a set of predicates that
take either one argument, called categories (c 2 C)
or two arguments, called relations (r 2 R).2 These
predicates are the interface between LSP’s percep-
tion and parsing components. The perception func-
tion f

per

takes an environment d and produces a log-
2The set of predicates are derived from our training data.

See Section 5.3.
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Figure 1: Our model takes a dataset of
images and their sentence descriptions
and learns to associate their fragments.
In images, fragments correspond to ob-
ject detections and scene context. In sen-
tences, fragments consist of typed de-
pendency tree [1] relations.

number of images and sentences. Farhadi et al. [5] learn a common meaning space, but their method
is limited to representing both images and sentences with a single triplet of (object, action, scene).
Zitnick et al. [14] use a Conditional Random Field to reason about spatial relationships in cartoon
scenes and their relation to natural language descriptions. Finally, joint models of language and
perception have also been explored in robotics settings [15].

Multimodal Representation Learning. Our approach falls into a general category of learning
from multi-modal data. Several probabilistic models for representing joint multimodal probability
distributions over images and sentences have been developed, using Deep Boltzmann Machines [16],
log-bilinear models [17], and topic models [18, 19]. Ngiam et al. [20] described an autoencoder
that learns audio-video representations through a shared bottleneck layer. More closely related to
our task and approach is the work of Frome et al. [21], who introduced a model that learns to
map images and words to a common semantic embedding with a ranking cost. Adopting a similar
approach, Socher et al. [22] described a Dependency Tree Recursive Neural Network that puts
entire sentences into correspondence with visual data. However, these methods reason about the
image only on the global level using a single, fixed-sized representation from the top layer of a
Convolutional Neural Network as a description for the entire image. In contrast, our model explicitly
reasons about objects that make up a complex scene.

Neural Representations for Images and Natural Language. Our model is a neural network
that is connected to image pixels on one side and raw 1-of-k word representations on the other.
There have been multiple approaches for learning neural representations in these data domains. In
Computer Vision, Convolutional Neural Networks (CNNs) [23] have recently been shown to learn
powerful image representations that support state of the art image classification [24, 25, 26] and
object detection [27, 28]. In language domain, several neural network models have been proposed
to learn word/n-gram representations [29, 30, 31, 32, 33, 34], sentence representations [35] and
paragraph/document representations [36].

3 Proposed Model

Learning and Inference. Our task is to retrieve relevant images given a sentence query, and con-
versely, relevant sentences given an image query. We train our model on a set of N images and N

corresponding sentences that describe their content (Figure 2). Given this set of correspondences,
we learn the weights of a neural network with a structured loss to output a high score when a com-
patible image-sentence pair is fed through the network, and low score otherwise. Once the training is
complete, all training data is discarded and the network is evaluated on a withheld set of images and
sentences. The evaluation scores all image-sentence pairs in the test set, sorts the images/sentences
in order of decreasing score and records the location of a ground truth result in the list.

Fragment Embeddings. Our core insight is that images are complex structures that are made
up of multiple entities that the sentences make explicit references to. We capture this intuition
directly in our model by breaking down both images and sentences into fragments and reason about
their alignment. In particular, we propose to detect objects as image fragments and use sentence
dependency tree relations [1] as sentence fragments (Figure 2).

Objective. We will compute the representation of both image and sentence fragments with a neural
network, and interpret the top layer as high-dimensional vectors embedded in a common multi-
modal space. We will think of the inner product between these vectors as a fragment compatibility
score, and compute the global image-sentence score as a fixed function of the scores of their respec-
tive fragments. Intuitively, an image-sentence pair will obtain a high global score if the sentence
fragments can each be confidently matched to some fragment in the image. Finally, we will learn
the weights of the neural networks such that the true image-sentence pairs achieve a score higher
(by a margin) than false image-sentence pairs.
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Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.
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(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td

, R
d

)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td

, and
relations R

j

that define the relationship between the current node and a subtree T
j

.

In the predictions, we use a log-linear distribution P (T |Q) / exp(✓T�(Q, T )) over the logical
forms with a feature vector � measuring compatibility between Q and T and parameters ✓ learnt
from training data. Every component �

j

is the number of times that a specific feature template
occurs in (Q, T ). We use the same templates as [1]: string triggers a predicate, string is under a
relation, string is under a trace predicate, two predicates are linked via relation and a predicate has
a child. The model learns by alternating between searching over a restricted space of valid trees
and gradient descent updates of the model parameters ✓. We use the Datalog inference engine to
produce the answers from the latent logical forms. The linguistic phenomena such as superlatives
and negations are handled by the logical forms and the inference engine. For a detailed exposition,
we refer the reader to [1].

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still corre-
sponds to the single world approach in our overview Figure 1. However our world is now popu-
lated with “facts” derived from automatic, semantic image segmentations S . For this purpose, we
build the world by running a state-of-the-art semantic segmentation algorithm [15] over the im-
ages and collect the recognized information about objects such as object class, 3D position, and
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(a) Sampled worlds.
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(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds where only segments of the class ’person’ are shown. In the
clock-wise order: original picture, most confident world, and three possible worlds (gray-scale values denote
the class confidence). Although, at first glance the most confident world seems to be a reasonable approach,
our experiments show opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.
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