

What is hanged on the chair? clothes

What is on the refrigerator? magnet, paper

What color are the cabinets? brown

Summary

Motivation

- Defining a task that benchmarks visual comprehension
- Easy for humans, challenging for machines
- Easy to automatically evaluate
- Agnostic to an internal representation
- Scalable annotation effort
- Can machines answer questions about images?
- Meaning of a scene depends on the task (question)

Goal

- End-to-end, jointly trained neural approach for answering questions about images
- Automatic performance measures that account for many scene and question interpretations

Approach

- Novel neural-based architecture with results on language-only model
- Doubles the performance of the prior symbolic method
- Global image representation (CNN)
- Capable of multi-word answers generations
- Consensus metrics to measure performance

References

[1] M. Malinowski et. al. A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input. NIPS'14.

[2] M. Malinowski et. al. Towards a Visual Turing Challenge. NIPS'14 Workshop. [3] M. Malinowski et. al. Hard to Cheat: A Turing Test based on Answering

- Questions about Images. AAAI'15 Workshop.
- [4] N. Silberman et. al. Indoor segmentation and support inference from RGBD images. ECCV'12.
- [5] S. Gupta et. al. Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images. CVPR'13.
- [6] J. Van De Weijer et. al. Learning Color Names From Real-World Images. **CVPR'07**
- [7] P. Liang et. al. Learning Dependency-based Compositional Semantics. Computational Linguistics'13.

[8] J. Donahue et. al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description. CVPR'15.

[9] C. Szegedy et. al. Going Deeper with Convolutions. CVPR'15.

Dataset

DAQUAR [1]

- Indoor images Based on NYU-Depth V2 dataset [4]
- 1449 RGBD images
- 12.5k Image-Question-Answer triples • Around 9 QA pairs per image
- Questions about objects, set of objects, colors, numbers, and sizes of the objects
- Subjectivity is dominant in the dataset
- Spatial relations exhibit different reference frames
- Same objects are referred by multiple names
- Night stand, stool, cabinet
- Subjective objects saliency

Prior Symbolic Approach

Symbolic-based Approach [1]

- Symbolic chain of perception, knowledge representation and formal deduction system
- Scene analysis techniques such as semantic segmentation [5] and color detector [6] extract a visual 'knowledge' from images
- Semantic parser [7] transforms a question into its meaning using hand-designed predicates Formal language of meaning
- Many design choices, poor scalability, problem of devising a right ontology

Ichair(instance 2.]

What is behind the table ?	$\rightarrow \lambda x.Be$ Semantic
	Parser

Ask Your Neurons: A Neural-based Approach to **Answering Questions about Images**

Mateusz Malinowski¹, Marcus Rohrbach², Mario Fritz¹ ¹Max Planck Institute for Informatics, Saarbrücken, Germany ²UC Berkeley EECS and ICSI, Berkeley, CA, United States

How many lamps are there?

Ask Your Neurons

Overview

- Neural-based approach that conditions on an image and a question, generates an answer
- Implicit representation
- End-to-end formulation
- Joint training
- Natural and weak supervision
- · Architecture is directly trained on the imagequestion-answer triples
- A few design choices

Language-Only (Neural Blind)

- Trained only on question-answer pairs, without seeing images
- Competitive performance
- Some answers can be decoded solely based on questions (e.g. chairs often surrounds a table)
- To achieve a good performance handling language is important
- Answers of similar questions don't change
- Around 17.5 Acc and 23.3 WUPS@0.9

Vision + Language (Neural Image)

- Multimodal
- Conditions on both language and image
- Uses LSTM for language modeling
- Uses CNN for image modeling
- Global visual representation
- Best performance: around 19.4 Acc and 25.3 WUPS@0.9

LSTM and CNN

Multiple-words Answer Generation

- Answers at each step are fed back to LSTM
- weights

- $\hat{a}_t = rg \max p(\boldsymbol{a}|\boldsymbol{x}, \boldsymbol{q}, A_{t-1}; \boldsymbol{\theta}), \boldsymbol{x}$ image $a \in \mathcal{V}$ - vocabulary representation $\boldsymbol{q} = [\boldsymbol{q}_1, \dots, \boldsymbol{q}_{n-1}, [?]], \boldsymbol{q}_j$ - question word index $A_{t-1} = \{ \hat{a}_1, \dots, \hat{a}_{t-1} \}$ - previous answer words

CNN

Acknowledgements. Marcus Rohrbach was supported by a fellowship within the FITweltweit-Program of the German Academic Exchange Service (DAAD).

Knowledge base	
brown, position X, Y, Z)	
brown, position X, Y, Z) 1, blue, position X, Y, Z) brown, position X, Y, Z)	
$hind(x,Table) \longrightarrow kind(x,Table)$	irs, dov

www.d2.mpi-inf.mpg.de/visual-turing-challenge

- Our architecture is trained to generate multiple words answers
- Can be seen as an encoder-decoder
- architecture with two LSTM [8] and shared

- Global visual representation GoogleNet-like architecture [9] as image
- feature extractor

How many burner knobs are there? Vision + Language: 4 Language Only: 6

bed? Vision + Language: pillow Language Only: doll, pillow

Performance Metrics

WUPS

- Limitations of Accuracy Acc(Dalmatian, Dog) = Acc(Horse, Dog)
- Lexical dataset with ontology
- Wu-Palmer similarity
- Taxonomy based measure
- Values between 0 and 1

'Dog

- WUPS scores [1]
 - Embrace word-level ambiguities
 - Soft, set-based generalization of Accuracy $WUPS(A,T) = \frac{1}{N} \sum \min\{\prod_{t \in T^i} WUP(a,t), \prod_{a \in A^i} WUP(a,t)\}$

Consensus

- Limitations of WUPS
- Doesn't account for many question and scene interpretations

What is the object on the floor in front of the wall? Human 1: **bed** Human 2: shelf Human 3: **bed** Juman 4: bookshelf

- Min Consensus
- Scores for at least one matching ground truth

Average Consensus

- Measures agreement of the answers
- Down-weight 'controversial' answers

 $\frac{1}{NK}\sum_{i=1}^{N}\sum_{m}^{n}\min\{\prod_{t\in T_{i}^{i}}\mu(a,t), \prod_{a\in A^{i}}\max_{\mu(a,t)}\mu(a,t)\}$

bed sheets, Vision + Language: chair Language Only: chair

What objects are found on the What are around dining table? What is in front of the curtain? Vision + Language: chair Human Answer 1: guitar Human Answer 2: chair

Quantitative Results

Standard Metrics		
Method	Accuracy	WUPS 0.9
Symbolic QA [2]	7.86	11.86
Neural Image QA (single-word)	19.43	25.28
Neural Image QA (multi-words)	17.49	23.28
Neural Blind QA (single-word)	17.15	22.80
Neural Blind QA (multi-words)	17.06	22.30
Human QA	50.20	50.82
Human QA; Blind	7.34	13.17
Agreement		
Level: Neural Image single-word	Accuracy	WUPS 0.9
No agreement	9.13	13.06
>= 50% agreement	24.10	30.94
Full agreement	29.62	37.71
Min Consensus		
Method	Accuracy	WUPS 0.9
Neural Blind QA (single-word)	22.56	30.93
Neural Image QA (single-word)	26.53	34.87
Average Consensus		
Method	Accuracy	WUPS 0.9
Neural Blind QA (single-word)	11.57	18.97
Neural Image QA (single-word)	13.51	21.36
Human Agreement		
\overleftarrow{t} 100 – All data – 100 – Test dat	a –	

0 50 100

Agreement Level 0

50