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Motivation
• Defining a task that benchmarks visual 

comprehension
• Easy for humans, challenging for machines
• Easy to automatically evaluate
• Agnostic to an internal representation
• Scalable annotation effort

• Can machines answer questions about images?
• Meaning of a scene depends on the task (question)

Goal
• End-to-end, jointly trained neural approach for 

answering questions about images
• Automatic performance measures that account 

for many scene and question interpretations 
Approach 
• Novel neural-based architecture with results on 

language-only model
• Doubles the performance of the prior symbolic method
• Global image representation (CNN)
• Capable of multi-word answers generations

• Consensus metrics to measure performance
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Overview
•Neural-based approach that conditions on 
an image and a question, generates an 
answer
• Implicit representation 
• End-to-end formulation
• Joint training
•Natural and weak supervision
• Architecture is directly trained on the image-

question-answer triples
• A few design choices

Language-Only (Neural Blind)
• Trained only on question-answer pairs, 
without seeing images
•Competitive performance
• Some answers can be decoded solely based on 

questions (e.g. chairs often surrounds a table)
• To achieve a good performance handling 

language is important
• Answers of similar questions don't change
• Around 17.5 Acc and 23.3 WUPS@0.9  

Vision + Language (Neural Image)
•Multimodal
• Conditions on both language and image
• Uses LSTM for language modeling
• Uses CNN for image modeling

•Global visual representation
• Best performance: around 19.4 Acc and 
25.3 WUPS@0.9

	Ask Your Neurons	Dataset
DAQUAR [1]
• Indoor images
• Based on NYU-Depth V2 dataset [4]

• 1449 RGBD images 
• 12.5k Image-Question-Answer triples
• Around 9 QA pairs per image

• Questions about objects, set of objects, colors, 
numbers, and sizes of the objects
• Subjectivity is dominant in the dataset
• Spatial relations exhibit different reference frames
• Same objects are referred by multiple names

• Night stand, stool, cabinet
• Subjective objects saliency

 Quantitative Results

www.d2.mpi-inf.mpg.de/visual-turing-challenge

What is hanged on the chair? 
clothes

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the refrigerator? 
magnet, paper

What are the objects close to the wall? What is on the stove? What is left of sink?

Neural-Image-QA: wall decoration tea kettle tissue roll

Language only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 2. Examples of compound answer words.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Neural-Image-QA: 2 2 3

Language only: 2 3 3

Ground truth answers: 2 2 3

Table 3. Counting questions.

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Neural-Image-QA: brown brown black, white

Language only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 4. Questions about color.

What color are the cabinets? 
brown

How many lamps are there? 
2

What are the objects close to the wall? What is on the stove? What is left of sink?

Neural-Image-QA: wall decoration tea kettle tissue roll

Language only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 2. Examples of compound answer words.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Neural-Image-QA: 2 2 3

Language only: 2 3 3

Ground truth answers: 2 2 3

Table 3. Counting questions.

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Neural-Image-QA: brown brown black, white

Language only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 4. Questions about color.

	Prior Symbolic Approach
Symbolic-based Approach [1]
• Symbolic chain of perception, knowledge 

representation and formal deduction system
• Scene analysis techniques such as semantic 

segmentation [5] and color detector [6] extract a 
visual ‘knowledge' from images
• Semantic parser [7] transforms a question into 

its meaning using hand-designed predicates
• Formal language of meaning 

•Many design choices, poor scalability, problem 
of devising a right ontology

CNN

chairs window <end>

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

is behind tablethe ?

LSTM

What

	LSTM and CNN
Multiple-words Answer Generation
•Our architecture is trained to generate 
multiple words answers
•Answers at each step are fed back to LSTM
•Can be seen as an encoder-decoder 
architecture with two LSTM [8] and shared 
weights 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
CNN
•Global visual representation
•GoogleNet-like architecture [9] as image 
feature extractor

LSTM LSTM

qn

a1 ai

CNN 
x

ai-1

LSTM

qn-1

...

...

... ...

Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x

=

�
a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ

a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v

t

as a
concatenation of [x, q̂

t

].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
t

at each time step t and predicts an out-
put word z

t

which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e

�v

)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) =

e

v�e

�v

e

v+e

�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs v

t

, h
t�1, and the memory cell c

t�1 as
follows:

i
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i

) (3)
f
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� �(c
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) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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	Performance Metrics
WUPS
• Limitations of Accuracy
• Acc(Dalmatian, Dog) = Acc(Horse, Dog)

• Lexical dataset with ontology
•Wu-Palmer similarity
• Taxonomy based measure
• Values between 0 and 1  
 
 

•WUPS scores [1]
• Embrace word-level ambiguities
• Soft, set-based generalization of Accuracy

Consensus
• Limitations of WUPS
• Doesn't account for many question and scene 

interpretations 
 
 
 

•Min Consensus
• Scores for at least one matching ground truth  
 

• Average Consensus
• Measures agreement of the answers
• Down-weight ‘controversial’ answers
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ŷt = softmax(Why
ht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT
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ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

y

k
t,v log ŷ
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The database exhibit some biases showing humans tend to focus on a few prominent objects. For
instance we have more than 400 occurrences of table and chair in the answers. In average the
object’s category occurs (14.25, 4) times in training set and (22.48, 5.75) times in total. Figure 4
shows example question-answer pairs together with the corresponding image that illustrate some of
the challenges captured in this dataset.
Performance Measure While the quality of an answer that the system produces can be measured
in terms of accuracy w.r.t. the ground truth (correct/wrong), we propose, inspired from the work
on Fuzzy Sets [22], a soft measure based on the WUP score [23], which we call WUPS (WUP
Set) score. As the number of classes grows, the semantic boundaries between them are becoming
more fuzzy. For example, both concepts ’carton’ and ’box’ have similar meaning, or ’cup’ and
’cup of coffee’ are almost indifferent. Therefore we seek a metric that measures the quality of an
answer and penalizes naive solutions where the architecture outputs too many or too few answers.
Standard Accuracy is defined as: 1

N

P
N

i=1 1{Ai

= T i} · 100 where Ai, T i are i-th answer and
ground-truth respectively. Since both the answers may include more than one object, it is beneficial
to represent them as sets of the objects T = {t1, t2, ...}. From this point of view we have for every
i 2 {1, 2, ..., N}:

1{Ai

= T i} = 1{Ai ✓ T i \ T i ✓ Ai} = min{1{Ai ✓ T i}, 1{T i ✓ Ai}} (3)
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Y

t2T
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Y

a2A

i

µ(a 2 T i

),
Y

t2T

i

µ(t 2 Ai
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We use a soft equivalent of the intersection operator in Eq. 3, and a set membership measure µ,
with properties µ(x 2 X) = 1 if x 2 X , µ(x 2 X) = max

y2X

µ(x = y) and µ(x = y) 2 [0, 1],
in Eq. 4 with equality whenever µ = 1. For µ we use a variant of Wu-Palmer similarity [23, 24].
WUP(a, b) calculates similarity based on the depth of two words a and b in the taxonomy[25, 26],
and define the WUPS score:
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Empirically, we have found that in our task a WUP score of around 0.9 is required for precise
answers. Therefore we have implemented down-weighting WUP(a, b) by one order of magnitude
(0.1 · WUP) whenever WUP(a, b) < t for a threshold t. We plot a curve over thresholds t ranging
from 0 to 1 (Figure 5). Since ”WUPS at 0” refers to the most ’forgivable’ measure without any down-
weighting and ”WUPS at 1.0” corresponds to plain accuracy. Figure 5 benchmarks architectures by
requiring answers with precision ranging from low to high. Here we show some examples of the pure
WUP score to give intuitions about the range: WUP(curtain, blinds) = 0.94, WUP(carton, box) =
0.94, WUP(stove, fire extinguisher) = 0.82.

4.2 Quantitative results
We perform a series of experiments to highlight particular challenges like uncertain segmenta-
tions, unknown true logical forms, some linguistic phenomena as well as show the advantages of
our proposed multi-world approach. In particular, we distinguish between experiments on syn-
thetic question-answer pairs (SynthQA) based on templates and those collected by annotators (Hu-
manQA), automatic scene segmentation (AutoSeg) with a computer vision algorithm [15] and hu-
man segmentations (HumanSeg) based on the ground-truth annotations in the NYU dataset as well
as single world (single) and multi-world (multi) approaches.
4.2.1 Synthetic question-answer pairs (SynthQA)
Based on human segmentations (HumanSeg, 37 classes) (1st and 2nd rows in Table 3) uses au-
tomatically generated questions (we use templates shown in Table 2) and human segmentations.
We have generated 20 training and 40 test question-answer pairs per template category, in total 140
training and 280 test pairs (as an exception negations type 1 and 2 have 10 training and 20 test exam-
ples each). This experiment shows how the architecture generalizes across similar type of questions
provided that we have human annotation of the image segments. We have further removed negations
of type 3 in the experiments as they have turned out to be particularly computationally demanding.
Performance increases hereby from 56% to 59.9% with about 80% training Accuracy. Since some
incorrect derivations give correct answers, the semantic parser learns wrong associations. Other dif-
ficulties stem from the limited training data and unseen object categories during training.
Based on automatic segmentations (AutoSeg, 37 classes, single) (3rd row in Table 3) tests the ar-
chitecture based on uncertain facts obtained from automatic semantic segmentation [15] where the
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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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where for the i-th question A

i is the answer generated by the
architecture and T

i

k

is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T

i

k

are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89

- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05

- single word 9.13 13.06 43.48

Subset: � 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68

- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30

- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83

- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56

- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset
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on the test data.
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swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

Test data

Agreement Level

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs are 
there?
Vision + Language: 4  
Language Only:       6

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What objects are found on the 
bed?
Vision + Language:   a                              
Language Only:          a             

bed sheets,  
pillow
doll, pillow

What are around dining table?
Vision + Language: chair 
Language Only:       chair

What is in front of the curtain?
Vision + Language: chair
Human Answer 1:    guitar
Human Answer 2:    chair    

Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a
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a1,a2, ...,aN (q,x)
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where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
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a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v
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as a
concatenation of [x, q̂
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].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
t

at each time step t and predicts an out-
put word z

t

which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e
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where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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k
t,v

qj

3

- question word index

Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x

=

�
a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â
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â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max

a2A
p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image 
representation- vocabulary Human 1: bed

Human 2: shelf 
Human 3: bed
Human 4: bookshelf

chair(instance 1, brown, position X, Y, Z)
chair(instance 2, brown, position X, Y, Z)
window(instance 1, blue, position X, Y, Z)
table(instance 1, brown, position X, Y, Z)

Knowledge base

What is behind  
the table ? Semantic 

Parser

λx.Behind(x,Table) chairs,  
window

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.


