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Human-like Comprehension
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Is the water
boiling?

- How far are machines from human quality understanding?

- How can we monitor progress and evaluate architectures?




Visual Turing Test (NI

- Holistic, open-ended task
> Visual scene understanding

> Natural language understanding

»  Deduction

* No internal representation is evaluated

> Challenge is open to diverse approaches

« Scalable annotation end evaluation effort

> Only question-answer

—
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What is behind the table?
sofa

pairs

T

What color are the cabinets?
brown
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QOutline
- Neural approach to answer questions about images
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What is behind the table ?
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 Performance metrics based on additional annotations

What is the object on the
floor in front of the wall?

Human 1: bed
Human 2: shelf
Human 3: bed
Human 4: bookshelf




Method: Ask Your Neurons

What is behind the table ? ]
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Method: Ask Your Neurons

- Predicting answer sequence

»  Recursive formulation

a; = arg maxp(a{a:;q, flt_l; 0), x - image representation

acV
g = |q1,---,49,-1,[’]], g;-question word index
V -vocabulary, A, ; = {aq,...,a._1}- previous answer words
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Method: Ask Your Neurons
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Method: Ask Your Neurons
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- Predicting answer sequence

»  Recursive formulation
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Method: Ask Your Neurons

M O E NN EEEEEm .

- Predicting answer sequence

»  Recursive formulation
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Symbolic vs Neural-based Approaches
- Symbolic approach (NIPS’14) E

>~ Explicit representation

> Independent components

- Detectors, Semantic Parser,
Database

> Components trained separately
> Many ‘hard’ design decisions

lyD
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Knowledge
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What is behind ¢ chairs,
the table 2 — Ax.Behind(x,Table) window

Logical Representation

M. Malinowski, et. al. “A Multi-World Approach to Question Answering
about Real-World Scenes based on Uncertain Input”. NIPS’14
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Symbolic vs Neural-based Approaches
- Symbolic approach (NIPS’14) - Ask Your Neurons (Our)

>~ Explicit representation

v

Implicit representation

v

> Independent components End-to-end formula

- Detectors, Semantic Parser, - From images and questions to
Database answers

v

> Components trained separately Joint training

v

> Many ‘hard’ design decisions
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Fewer design decisions
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Neural Visual QA vs Neural Image Description

* Neural Image Description

> Conditions on an image

> Generates a description

- Sequence of words

> Loss at every step
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Loss

J. Donahue, et. al. “Long-term Recurrent Convolutional Networks for
Visual Recognition and Description”. CVPR15
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Neural Visual QA vs Neural Image Description

- Neural Image Description .+ Ask Your Neurons (Our)
> Conditions on an image > Conditions on an image
f and a question
> Generates a description > (Generates an answer

- Sequence of words - Sequence of answer words

»  Loss at every step ~  Loss only at answer words
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Visual Turing Test:

What is behind the table? What is the object on the How many doors are open?
sofa counter in the corner? 1
microwave

- Dataset for Question Answering on Real-world images

- 1449 RGBD indoor images (NYU-Depth V2 dataset)

» 12.5k question-answer pairs about colors, numbers, objects
«  Human-type subjectivity is common in the dataset
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—valuation: WUPS (NI

Ground Truth

0S'14)

Predictions

Armchair

Wardrobe

Chair

Accuracy 0 p— 0
Wu-Palmer

Similarity [1] 08 < 0.9
WUPS @0.9

(NIPS'14) ~0 << 0.9

[1] Wu, Z., Palmer, M.: Verbs semantics and lexical selection. ACL. 1994.
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Results on Full DAQUAR

Methods Accuracy WUPS @0.9

Baseline: Symbolic (NIPS’14) 7.86% 11.86%

A Language Only (Our) 17.15% 22.80%
Vision + Language (Our) 19.43% 25.28%
Human performance (NIPS’14) 50.20% 50.82%

What is on the What is the color of the How many drawers What is the largest
refrigerator? comforter? are there? object?

magnet, paper blue, white 3 bed
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Human performance (NIPS’14) 50.20% 50.82%
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Results on Full DAQUAR

Methods Accuracy WUPS @0.9

Baseline: Symbolic (NIPS’14) 7.86% 11.86%

Language Only (Our) 17.15% 22.80%

Vision + Language (Our) 19.43% 25.28%
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Qualitative

Results

What is on the right side of

the cabinet?
Vision + Language:
Language Only:

bed
bed

What objects are found on the How many burner knobs are

bed? there?
Vision + Language: bed sheets, Vision + Language: 4
pillow Language Only: 6

Language Only: doll, pillow
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Qualitative Results: Failure Cases

N B

How many chairs are there? How many glass cups are What is on the left side of the
there? bed?

Vision + Language: 1 Vision + Language: 2 Vision + Language: night stand

Language Only: 4 Language Only: 6 Language Only:  night stand

Human: 2 Human: 4 Human: ball

.\
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1. New Performance Metric: Min Consensus
- WUPS handle word-level ambiguities

- But how to embrace many possible interpretations of both a question
and a scene?

What is the object on the
floor in front of the wall?

Human 1: bed
Human 2: shelf
Human 3: bed
Human 4: bookshelf
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1. New Performance Metric: Min Consensus
«  We extend WUPS scores by Min Consensus

>~ Finding at least one human answer that matches with the predicted one
>~ Treat all possible interpretations equal

What is the object on the
floor in front of the wall?

Human 1: bed
Human 2: shelf
Human 3: bed
Human 4: bookshelf




Results on DAQUAR-Consensus

Methods (Old Metric) Accuracy WUPS @0.9
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Language Only (Our) 17.15% f20.8% -
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Vision + Language (Our) 19.43% .35.28% )
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Methods (Min Consensus) Accuracy WUPS @0.9
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Language Only (Our) 22 56% 30.93% .
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Vision + Language (Our) 26.53% 134.87% ,
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Human performance (Our) 60.50% 169.65% .
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Results on DAQUAR-Consensus

What is in front of the curtain?

Model: chair
Human 1: guitar
Human 2: chair

.
T

How many steel chairs are there?
Model: 4
Human 1: 2
Human 2: 4

Model: white
Human 1: white
Human 2: pink

What is the largest object?
Model: bed

Human 1: bed

Human 2: quilt




2. New Performance Metric: Average Consensus
- We extend WUPS scores by Average Consensus

>~ Averaging over multiple possible human answers

>~ Encourages the most agreeable answers

What is in front of table?

Human 1: chair
Human 2: chair
Human 3: chair, bag
Human 4: wall

For the Average Consensus:
answer chair is better than wall




Results on DAQUAR-Consensus

Methods (Average Consensus) Accuracy WUPS @0.9

18.97%

Language Only (Our) 11.57%

Vision + Language (Our) 13.51% 21.36%

Human performance (Our) 36.78% 45.68%

Amount of subjectivity in the task captured by the Consensus metric

100 | N

Fraction of data
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0 0 @

0 50 100
Agreement Level
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Conclusions

Towards a Visual Turing Test

>

Can machine answer questions about images?

Novel Neural-based architecture

End-to-end training on Image-Question-Answer triples

Doubles the performance of the previous work on DAQUAR

New Consensus Metrics to deal with many interpretations

Outlook: Explore spectrum between classic Al and Deep Learning

LSTM

i

~

What is on the right side of
the cabinet?

Vision + Language: bed
Language Only:  bed

How many burner knobs
are there?

Vision + Language: 4
Language Only: 6




Thank you for your attention!

Ask Your Neurons:
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Mateusz Malinowski
Marcus Rohrbach
Mario Fritz

https://www.d2.mpi-inf.mpg.de/visual-turing-challenge

| am expecting to finish my PhD in 2016 and
looking for new opportunities.
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