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Human-like Comprehension
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• How far are machines from human quality understanding?
• How can we monitor progress and evaluate architectures?
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Visual Turing Test (NIPS’14)
• Holistic, open-ended task

‣ Visual scene understanding
‣ Natural language understanding
‣ Deduction

• No internal representation is evaluated
‣ Challenge is open to diverse approaches

• Scalable annotation end evaluation effort
‣ Only question-answer pairs
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What is behind the table? 
sofa

What are the objects close to the wall? What is on the stove? What is left of sink?

Neural-Image-QA: wall decoration tea kettle tissue roll

Language only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 2. Examples of compound answer words.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Neural-Image-QA: 2 2 3

Language only: 2 3 3

Ground truth answers: 2 2 3

Table 3. Counting questions.

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Neural-Image-QA: brown brown black, white

Language only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 4. Questions about color.

What color are the cabinets? 
brown

How many lamps are there? 
2

What are the objects close to the wall? What is on the stove? What is left of sink?

Neural-Image-QA: wall decoration tea kettle tissue roll

Language only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 2. Examples of compound answer words.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Neural-Image-QA: 2 2 3

Language only: 2 3 3

Ground truth answers: 2 2 3

Table 3. Counting questions.

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Neural-Image-QA: brown brown black, white

Language only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 4. Questions about color.

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the refrigerator? 
magnet, paper
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• Symbolic-based Approaches 

• Large Scale Datasets  
 
 
 

• Neural-based Approaches 
 

• Attention-based Approaches 

• Hybrid Approaches-
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chair(1, brown, position X, Y, Z)
window(1, blue, position X, Y, Z)

window
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VQA: Visual Question Answering

www.visualqa.org

Stanislaw Antol

⇤
, Aishwarya Agrawal

⇤
, Jiasen Lu, Margaret Mitchell,

Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such

as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas

of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a

more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA

is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can

be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers

(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human

performance.
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1 INTRODUCTION
We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤The first two authors contributed equally.
• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.
• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this
paper, we present both an open-ended answering task and a
multiple-choice task [43], [31]. Unlike the open-answer task
that requires a free-form response, the multiple-choice task
only requires an algorithm to pick from a predefined list of
possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract
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What is the mustache 
made of?

Visual Madlibs: Fill in the blank Image Generation and Question Answering

Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg

Department of Computer Science, University of North Carolina, Chapel Hill

{licheng, eunbyung, acberg, tlberg}@cs.unc.edu

Abstract

In this paper, we introduce a new dataset consisting of
360,001 focused natural language descriptions for 10,738
images. This dataset, the Visual Madlibs dataset, is col-
lected using automatically produced fill-in-the-blank tem-
plates designed to gather targeted descriptions about: peo-
ple and objects, their appearances, activities, and interac-
tions, as well as inferences about the general scene or its
broader context. We provide several analyses of the Vi-
sual Madlibs dataset and demonstrate its applicability to
two new description generation tasks: focused description
generation, and multiple-choice question-answering for im-
ages. Experiments using joint-embedding and deep learn-
ing methods show promising results on these tasks.

1. Introduction
Much of everyday language and discourse concerns the

visual world around us, making understanding the rela-
tionship between the physical world and language describ-
ing that world an important challenge problem for AI.
Understanding this complex and subtle relationship will
have broad applicability toward inferring human-like under-
standing for images, producing natural human robot interac-
tions, and for tasks like natural language grounding in NLP.
In computer vision, along with improvements in deep learn-
ing based visual recognition, there has been an explosion of
recent interest in methods to automatically generate natural
language descriptions for images [5, 9, 15, 32, 16, 20] or
videos [31, 8]. However, most of these methods and exist-
ing datasets have focused on only one type of description, a
generic description for the entire image.

In this paper, we collect a new dataset of focused, tar-
geted, descriptions, the Visual Madlibs dataset, as illus-
trated in Figure 1. To collect this dataset, we introduce au-
tomatically produced fill-in-the-blank templates designed to
collect a range of different descriptions for visual content in
an image. For example, a user might be presented with an

Figure 1: An example from the Visual Madlibs Dataset.
This dataset collects targeted descriptions for people and
objects, denoting their appearances, affordances, activities,
and interactions. It also provides descriptions of broader
emotional, spatial and temporal context for an image.

image and a fill-in-the-blank template such as “The frisbee
is [blank]” and asked to fill in the [blank] with a descrip-
tion of the appearance of frisbee. Alternatively, they could
be asked to fill in the [blank] with a description of what
the person is doing with the frisbee. Fill-in-the-blank ques-
tions can be targeted to collect descriptions about people
and objects, their appearances, activities, and interactions,
as well as descriptions of the general scene or the broader
emotional, spatial, or temporal context of an image. Us-
ing these templates, we collect a large collection of 360,001
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Person A is …

t = 1 t = 2 t = T

“How” “many” “books”

LSTM

...Softmax

One Two ... Red Bird
.21 .56 ... .09 .01

LinearImage

CNN

Word Embedding

Figure 2: VIS+LSTM Model

3.1 Models

In recent years, recurrent neural networks (RNNs) have enjoyed some successes in the field of nat-
ural language processing (NLP). Long short-term memory (LSTM) [19] is a form of RNN which
is easier to train than standard RNNs because of its linear error propagation and multiplicative gat-
ings. Our model builds directly on top of the LSTM sentence model and is called the “VIS+LSTM”
model. It treats the image as one word of the question. We borrowed this idea of treating the image
as a word from caption generation work done by Vinyals et al. [1]. We compare this newly proposed
model with a suite of simpler models in the Experimental Results section.

1. We use the last hidden layer of the 19-layer Oxford VGG Conv Net [20] trained on Ima-
geNet 2014 Challenge [21] as our visual embeddings. The CNN part of our model is kept
frozen during training.

2. We experimented with several different word embedding models: randomly initialized em-
bedding, dataset-specific skip-gram embedding and general-purpose skip-gram embedding
model [22]. The word embeddings are trained with the rest of the model.

3. We then treat the image as if it is the first word of the sentence. Similar to DeViSE [23],
we use a linear or affine transformation to map 4096 dimension image feature vectors to a
300 or 500 dimensional vector that matches the dimension of the word embeddings.

4. We can optionally treat the image as the last word of the question as well through a different
weight matrix and optionally add a reverse LSTM, which gets the same content but operates
in a backward sequential fashion.

5. The LSTM(s) outputs are fed into a softmax layer at the last timestep to generate answers.

3.2 Question-Answer Generation

The currently available DAQUAR dataset contains approximately 1500 images and 7000 questions
on 37 common object classes, which might be not enough for training large complex models. An-
other problem with the current dataset is that simply guessing the modes can yield very good accu-
racy.

We aim to create another dataset, to produce a much larger number of QA pairs and a more even
distribution of answers. While collecting human generated QA pairs is one possible approach, and
another is to synthesize questions based on image labeling, we instead propose to automatically
convert descriptions into QA form. In general, objects mentioned in image descriptions are easier to
detect than the ones in DAQUAR’s human generated questions, and than the ones in synthetic QAs
based on ground truth labeling. This allows the model to rely more on rough image understanding
without any logical reasoning. Lastly the conversion process preserves the language variability in
the original description, and results in more human-like questions than questions generated from
image labeling.

As a starting point we used the MS-COCO dataset [17], but the same method can be applied to any
other image description dataset, such as Flickr [24], SBU [25], or even the internet.

3

What is the doing cat ? <BOA> Sitting on umbrella the 

CNN 

LSTM 

Embedding 

Fusing 

Sitting on umbrella the <EOA> 

Shared 

Shared 

Intermediate 

Softmax 

Figure 2: Illustration of the mQA model architecture. We input an image and a question about the
image (i.e. “What is the cat doing?”) to the model. The model is trained to generate the answer to
the question (i.e. “Sitting on the umbrella”). The weight matrix in the word embedding layers of
the two LSTMs (one for the question and one for the answer) are shared. In addition, as in [25], this
weight matrix is also shared, in a transposed manner, with the weight matrix in the Softmax layer.
Different colors in the figure represent different components of the model. (Best viewed in color.)

There are some concurrent and independent works on this topic: [1, 23, 32]. [1] propose a large-
scale dataset also based on MS COCO. They also provide some simple baseline methods on this
dataset. Compared to them, we propose a stronger model for this task and evaluate our method using
human judges. Our dataset also contains two different kinds of language, which can be useful for
other tasks, such as machine translation. Because we use a different set of annotators and different
requirements of the annotation, our dataset and the [1] can be complementary to each other, and lead
to some interesting topics, such as dataset transferring for visual question answering.

Both [23] and [32] use a model containing a single LSTM and a CNN. They concatenate the question
and the answer (for [32], the answer is a single word. [23] also prefer a single word as the answer),
and then feed them to the LSTM. Different from them, we use two separate LSTMs for questions
and answers respectively in consideration of the different properties (e.g. grammar) of questions and
answers, while allow the sharing of the word-embeddings. For the dataset, [23] adopt the dataset
proposed in [22], which is much smaller than our FM-IQA dataset. [32] utilize the annotations in
MS COCO and synthesize a dataset with four pre-defined types of questions (i.e. object, number,
color, and location). They also synthesize the answer with a single word. Their dataset can also be
complementary to ours.

3 The Multimodal QA (mQA) Model
We show the architecture of our mQA model in Figure 2. The model has four components: (I). a
Long Short-Term Memory (LSTM [12]) for extracting semantic representation of a question, (II). a
deep Convolutional Neural Network (CNN) for extracting the image representation, (III). an LSTM
to extract representation of the current word in the answer and its linguistic context, and (IV). a
fusing component that incorporates the information from the first three parts together and generates
the next word in the answer. These four components can be jointly trained together 3. The details
of the four model components are described in Section 3.1. The effectiveness of the important
components and strategies are analyzed in Section 5.3.

The inputs of the model are a question and the reference image. The model is trained to generate
the answer. The words in the question and answer are represented by one-hot vectors (i.e. binary
vectors with the length of the dictionary size N and have only one non-zero vector indicating its
index in the word dictionary). We add a hBOAi sign and a hEOAi sign, as two spatial words in
the word dictionary, at the beginning and the end of the training answers respectively. They will be
used for generating the answer to the question in the testing stage.

In the testing stage, we input an image and a question about the image into the model first. To
generate the answer, we start with the start sign hBOAi and use the model to calculate the probability
distribution of the next word. We then use a beam search scheme that keeps the best K candidates

3In practice, we fix the CNN part because the gradient returned from LSTM is very noisy. Finetuning the
CNN takes a much longer time than just fixing it, and does not improve the performance significantly.
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Stacked Attention Networks for Image Question Answering

Zichao Yang1, Xiaodong He2, Jianfeng Gao2, Li Deng2, Alex Smola1
1Carnegie Mellon University, 2Microsoft Research, Redmond, WA 98052, USA

zichaoy@cs.cmu.edu, {xiaohe, jfgao, deng}@microsoft.com, alex@smola.org

Abstract

This paper presents stacked attention networks (SANs)
that learn to answer natural language questions from im-
ages. SANs use semantic representation of a question as
query to search for the regions in an image that are related
to the answer. We argue that image question answering
(QA) often requires multiple steps of reasoning. Thus, we
develop a multiple-layer SAN in which we query an image
multiple times to infer the answer progressively. Experi-
ments conducted on four image QA data sets demonstrate
that the proposed SANs significantly outperform previous
state-of-the-art approaches. The visualization of the atten-
tion layers illustrates the progress that the SAN locates the
relevant visual clues that lead to the answer of the question
layer-by-layer.

1. Introduction
With the recent advancement in computer vision and

in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained
regions in an image.

By examining the image QA data sets, we find that it is
often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
What are sitting 
in the basket on 

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in

the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses
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A cat.
Why is the person holding a knife?
To cut the cake with.

What kind of animal is in the photo?

At the top.
Where are the carrots?

Three.
How many people are there?

cat

cake

A B

C D

Figure 8: Object groundings and attention heat maps. We visu-
alize the attention heat maps (with Gaussian blur) on the images.
The brighter regions indicate larger attention terms, i.e., where the
model focuses. The bounding boxes show the object-level ground-
ings of the objects mentioned in the answers.

subjects are not trained before answering the questions;
however, the LSTM model manages to learn the priors of
answers from the training set. In addition, both the ques-
tions and image content contribute to better results. The
Question + Image baseline shows large improvement on
overall accuracy (52.1%) than the ones when either the
question or the image is absent. Finally, our attention-based
LSTM model (LSTM-Att) outperforms other baselines on
all question types, except the how category, achieving the
best model performance of 55.6%.

We show qualitative results of human experiments and
the LSTM models on the telling QA task in Fig. 7. Both
humans and the baseline models make mistakes with and
without images. Human subjects fail to tell a sheep apart
from a goat in the last example, whereas the LSTM model
gives the correct answer. On the other hand, humans suc-
cessfully answer the fourth why question when seeing the
image, where the LSTM model fails in both cases.

The object groundings help us analyzing the behavior
of the attention-based model. First, we examine where the
model focuses by visualizing the attention terms of Eq. (10).
The attention terms vary as the model reads the QA words
one by one. We perform max pooling along time to find
the maximum attention weight on each of the 14⇥14 image
grid, producing an attention heat map. We see if the model
attends to the objects mentioned in QA pair. The answer ob-
ject boxes occupy an average of 12% of image area; while
the peak of the attention heat map resides in answer object
boxes 24% of the time. That indicates a tendency for the
model to attend to the answer-related regions. We visualize

Figure 9: Impact of object category frequency on the model accu-
racy in the pointing QA task. The x-axis shows the upper bound
object category frequency of each bin. The y-axis shows the mean
accuracy within each bin. The accuracy increases gradually as the
model sees more instances from the same category. Meanwhile,
the model manages to handle infrequent categories by transferring
knowledge from larger categories.

the attention heat maps on example QA pairs in Fig. 8. The
top two examples show QA pairs with answers containing
an object. The peaks of the attention heat maps reside in the
bounding boxes of the target objects. The bottom two ex-
amples show QA pairs with answers containing no object.
The attention heat maps are scattered around the image grid.
For instance, the model attends to the four corners and the
borders of the image to look for the carrots in Fig. 8(c).

Furthermore, we use object groundings to examine the
model’s behavior on the pointing QA. Fig. 9 shows the im-
pact of object category frequency on the QA accuracy. We
divide the object categories into different bins based on their
frequencies (by power of 2) in the training set. We com-
pute the mean accuracy over the test set QA pairs within
each bin. We observe increased accuracy for categories
with more object instances. However, the model is able to
transfer knowledge from common categories to rare ones,
generating an adequate performance (over 50%) on object
categories with only a few instances.

7. Conclusions
In this paper, we propose to leverage the visually

grounded 7W questions to facilitate a deeper understand-
ing of images beyond recognizing objects. Previous visual
QA works lack a tight semantic link between textual de-
scriptions and image regions. We link the object mentions
to their bounding boxes in the images. Object grounding
allows us to resolve coreference ambiguity, study objects
in the QA context, and evaluate on a new type of visually
grounded QA. We propose an attention-based LSTM model
to achieve the state-of-the-art performance on the QA tasks.
Future research directions include exploring ways of utiliz-
ing common sense knowledge to improve the model’s per-
formance on QA tasks that require complex reasoning.

Deep Compositional Question Answering with Neural Module Networks

Jacob Andreas Marcus Rohrbach Trevor Darrell Dan Klein
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
{jda,rohrbach,trevor,klein}@{cs,eecs,eecs,cs}.berkeley.edu

Abstract

Visual question answering is fundamentally composi-
tional in nature—a question like where is the dog? shares
substructure with questions like what color is the dog? and
where is the cat? This paper seeks to simultaneously exploit
the representational capacity of deep networks and the com-
positional linguistic structure of questions. We describe a
procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural
“modules” into deep networks for question answering. Our
approach decomposes questions into their linguistic sub-
structures, and uses these structures to dynamically instan-
tiate modular networks (with reusable components for rec-
ognizing dogs, classifying colors, etc.). The resulting com-
pound networks are jointly trained. We evaluate our ap-
proach on two challenging datasets for visual question an-
swering, achieving state-of-the-art results on both the VQA
natural image dataset and a new dataset of complex ques-
tions about abstract shapes.

1. Introduction

This paper describes an approach to visual question an-
swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x
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a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ

a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v

t

as a
concatenation of [x, q̂

t

].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
t

at each time step t and predicts an out-
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which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e
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t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ
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ŷt = softmax(Why
ht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT
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t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max

a2A
p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x

=
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a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t
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p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ

a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v

t

as a
concatenation of [x, q̂

t

].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
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at each time step t and predicts an out-
put word z
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which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e
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is a linear embedding of the correspond-
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. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
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in [27] and the Caffe implementation from [3]. With the
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max

a2A
p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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with ˆ
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not given any answer so far. The approach is terminated
when â
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= $. We evaluate the method solely based on
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ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ
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tice, our algorithm learns not to predict any previously pre-
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As shown in Figure 1 and Figure 2, we feed Neural-Image-
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tion and J?K := q

n

encodes the question mark - the end of
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length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
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In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
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a1..t := [â1, . . . , ât�1], i.e.
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. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
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in [27] and the Caffe implementation from [3]. With the
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tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
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• Predicting answer sequence
‣ Recursive formulation
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where a
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tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
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We thus formulate the prediction procedure recursively:
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when â
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answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ
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t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
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As shown in Figure 1 and Figure 2, we feed Neural-Image-
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q1, . . . , qn�1, J?K
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, where each q
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encodes the question mark - the end of
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tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
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Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max

a2A
p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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where a
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and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â
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changed by maximizing over V \ ˆ
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tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
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allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
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tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
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Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
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:= [q, â1..t]. This means the question q and the previous
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encode the image x using a CNN and provide it at every
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neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max

a2A
p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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Figure 3: Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.

for activity recognition ([16, 33, 13, 2, 1]). [33, 16] both
propose convolutional networks which learn filters based on
a stack of N input frames. Though we analyze clips of 16
frames in this work, we note that the LRCN system is more
flexible than [33, 16] since it is not constrained to analyz-
ing fixed length inputs and could potentially learn to rec-
ognize complex video sequences (e.g., cooking sequences
as presented in 6). [1, 2] use recurrent neural networks to
learn temporal dynamics of either traditional vision features
([1]) or deep features ([2]), but do not train their models
end-to-end and do not pre-train on larger object recognition
databases for important performance gains.

We explore two variants of the LRCN architecture: one
in which the LSTM is placed after the first fully connected
layer of the CNN (LRCN-fc6) and another in which the
LSTM is placed after the second fully connected layer of
the CNN (LRCN-fc7). We train the LRCN networks with
video clips of 16 frames. The LRCN predicts the video class
at each time step and we average these predictions for final
classification. At test time, we extract 16 frame clips with a
stride of 8 frames from each video and average across clips.

We also consider both RGB and flow inputs. Flow is
computed with [4] and transformed into a “flow image”
by centering x and y flow values around 128 and mul-
tiplying by a scalar such that flow values fall between 0
and 255. A third channel for the flow image is created
by calculating the flow magnitude. The CNN base of the
LRCN is a hybrid of the Caffe [14] reference model, a mi-
nor variant of AlexNet [22], and the network used by Zeiler
& Fergus [47]. The net is pre-trained on the 1.2M image
ILSVRC-2012 [32] classification training subset of the Im-
ageNet [7] dataset, giving the network a strong initialization
to facilitate faster training and prevent over-fitting to the rel-
atively small video datasets. When classifying center crops,

the top-1 classification accuracy is 60.2% and 57.4% for
the hybrid and Caffe reference models, respectively. In our
baseline model, T video frames are individually classified
by a CNN. As in the LSTM model, whole video classifica-
tion is done by averaging scores across all video frames.

4.1. Evaluation

We evaluate our architecture on the UCF-101 dataset
[36] which consists of over 12,000 videos categorized into
101 human action classes. The dataset is split into three
splits, with a little under 8,000 videos in the training set for
each split. We report accuracy for split-1.

Figure 1, columns 2-3, compare video classification of
our proposed models (LRCN-fc6, LRCN-fc7) against the
baseline architecture for both RGB and flow inputs. Each
LRCN network is trained end-to-end. To determine if end-
to-end training is necessary, we also train a LRCN-fc6
network in which only the LSTM parameters are learned.
The fully fine-tuned network increases performance from
70.47% to 71.12%, demonstrating that end-to-end fine-
tuning is indeed beneficial. The LRCN-fc6 network yields
the best results for both RGB and flow and improves upon
the baseline network by 2.12 % and 4.75% respectively.

RGB and flow networks can be combined by comput-
ing a weighted average of network scores as proposed in
[33]. Like [33], we report two weighted averages of the
predictions from the RGB and flow networks in Table 1
(right). Since the flow network outperforms the RGB net-
work, weighting the flow network higher unsurprisingly
leads to better accuracy. In this case, LRCN outperforms
the baseline single-frame model by 3.88%.

The LRCN shows clear improvement over the baseline
single-frame system and approaches the accuracy achieved
by other deep models. [33] report the results on UCF-101

Large building with a clock <end>

LSTM LSTM LSTM LSTM LSTM LSTM

• Neural Image Description
‣ Conditions on an image  

‣ Generates a description
- Sequence of words

‣ Loss at every step

J. Donahue, et. al. “Long-term Recurrent Convolutional Networks for 
Visual Recognition and Description”. CVPR15
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Figure 3: Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.
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propose convolutional networks which learn filters based on
a stack of N input frames. Though we analyze clips of 16
frames in this work, we note that the LRCN system is more
flexible than [33, 16] since it is not constrained to analyz-
ing fixed length inputs and could potentially learn to rec-
ognize complex video sequences (e.g., cooking sequences
as presented in 6). [1, 2] use recurrent neural networks to
learn temporal dynamics of either traditional vision features
([1]) or deep features ([2]), but do not train their models
end-to-end and do not pre-train on larger object recognition
databases for important performance gains.

We explore two variants of the LRCN architecture: one
in which the LSTM is placed after the first fully connected
layer of the CNN (LRCN-fc6) and another in which the
LSTM is placed after the second fully connected layer of
the CNN (LRCN-fc7). We train the LRCN networks with
video clips of 16 frames. The LRCN predicts the video class
at each time step and we average these predictions for final
classification. At test time, we extract 16 frame clips with a
stride of 8 frames from each video and average across clips.

We also consider both RGB and flow inputs. Flow is
computed with [4] and transformed into a “flow image”
by centering x and y flow values around 128 and mul-
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What is behind the table? 
sofa

How many doors are open? 
1

What is the object on the 
counter in the corner?       
microwave

• Dataset for Question Answering on Real-world images
• 1449 RGBD indoor images (NYU-Depth V2 dataset)
• 12.5k question-answer pairs about colors, numbers, objects
• Human-type subjectivity is common in the dataset
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Methods Accuracy WUPS @0.9

Baseline: Symbolic (NIPS’14) 7.86% 11.86%

Language Only (Our) 17.15% 22.80%

Vision + Language (Our) 19.43% 25.28%

Human performance (NIPS’14) 50.20% 50.82%

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions
We have presented a neural architecture for answering

natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.
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prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the right side of 
the cabinet?
Vision + Language: 
Language Only:     

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What objects are found on the 
bed?
Vision + Language:   a                             
 
Language Only:          a             

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs are 
there?
Vision + Language: 4  
Language Only:      bed

bed

doll, pillow
6pillow

bed sheets,
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

How many chairs are there? 

Vision + Language: 1  
Language Only:      
Human:                   

How many glass cups are 
there?
Vision + Language: 2  
Language Only:     
Human:                  

What is on the left side of the 
bed?
Vision + Language: night stand  
Language Only:     
Human:                  2 4

4 6 night stand
ball
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1. New Performance Metric: Min Consensus
• WUPS handle word-level ambiguities
• But how to embrace many possible interpretations of both a question 

and a scene?
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What is the object on the 
floor in front of the wall? 
-.

Human 1: bed
Human 2: shelf 
Human 3: bed
Human 4: bookshelf
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• We extend WUPS scores by Min Consensus
‣ Finding at least one human answer that matches with the predicted one
‣ Treat all possible interpretations equal
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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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where for the i-th question A

i is the answer generated by the
architecture and T

i

k

is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T

i

k

are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89

- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05

- single word 9.13 13.06 43.48

Subset: � 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68

- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30

- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83

- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56

- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

What is the object on the 
floor in front of the wall? 
.

Human 1: bed
Human 2: shelf 
Human 3: bed
Human 4: bookshelf

1. New Performance Metric: Min Consensus
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Methods (Min Consensus) Accuracy WUPS @0.9

Language Only (Our) 22.56% 30.93%

Vision + Language (Our) 26.53% 34.87%

Human performance (Our) 60.50% 69.65%

Methods (Old Metric) Accuracy WUPS @0.9

Language Only (Our) 17.15% 22.8%

Vision + Language (Our) 19.43% 25.28%

Human performance (NIPS’14) 50.2% 50.82%
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What is in front of the curtain?
Model:     chair 
Human 1: guitar 
Human 2: chair    

What color are the beds?
Model:     white 
Human 1: white 
Human 2: pink    

How many steel chairs are there?
Model:     4 
Human 1: 2 
Human 2: 4    

What is the largest object?
Model:     bed 
Human 1: bed 
Human 2: quilt    
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• We extend WUPS scores by Average Consensus
‣ Averaging over multiple possible human answers
‣ Encourages the most agreeable answers  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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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where for the i-th question A

i is the answer generated by the
architecture and T

i

k

is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T

i

k

are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89

- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05

- single word 9.13 13.06 43.48

Subset: � 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68

- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30

- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83

- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56

- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

For the Average Consensus:
answer chair is better than wall

What is in front of table? 
.

Human 1: chair
Human 2: chair  
Human 3: chair, bag
Human 4: wall

2. New Performance Metric: Average Consensus
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Methods (Average Consensus) Accuracy WUPS @0.9

Language Only (Our) 11.57% 18.97%

Vision + Language (Our) 13.51% 21.36%

Human performance (Our) 36.78% 45.68%
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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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where for the i-th question A

i is the answer generated by the
architecture and T

i

k

is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers A

i and T

i

k

are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89

- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05

- single word 9.13 13.06 43.48

Subset: � 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68

- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30

- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83

- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56

- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

Agreement Level

Amount of subjectivity in the task captured by the Consensus metric
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Conclusions
• Towards a Visual Turing Test

‣ Can machine answer questions about images?

• Novel Neural-based architecture
• End-to-end training on Image-Question-Answer triples
• Doubles the performance of the previous work on DAQUAR
• New Consensus Metrics to deal with many interpretations
• Outlook: Explore spectrum between classic AI and Deep Learning
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x

=

�
a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ

a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v

t

as a
concatenation of [x, q̂

t

].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
t

at each time step t and predicts an out-
put word z

t

which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e

�v

)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) =

e

v�e

�v

e

v+e

�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs v

t

, h
t�1, and the memory cell c

t�1 as
follows:

i

t

= �(W

vi

v

t

+W

hi

h

t�1 + b

i

) (3)
f

t

= �(W

vf

v

t

+W

hf

h

t�1 + b

f

) (4)
o

t

= �(W

vo

v

t

+W

ho

h

t�1 + b

o

) (5)
g

t

= �(W

vg

v

t

+W

hg

h

t�1 + b

g

) (6)
c

t

= f

t

� c

t�1 + i

t

� g

t

(7)
h

t

= o

t

� �(c

t

) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the right side of 
the cabinet?
Vision + Language: bed  
Language Only:     bed

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs 
are there?
Vision + Language: 4  
Language Only:     6
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Thank you for your attention!
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