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Hint: scene

Problem & Contributions

Problem

Benchmark Pose Time Input
Face recognition[2] Frontal Years Head
Re-identification[3] Upright Hours Full body
Person recognition[1] Diverse Years Full image

Contributions

1. New state of the art person recogniser.
2. Analysis of different cues.

3. New challenging setup.

Dataset

Person In Photo Albums (PIPA) [1]
* 37,107 Flickr images (CC licensed).
* Head box + identity annotations.

Evaluation protocol [1]
* How well can you recognise a person, having
seen ~10 training examples per person?

Approach

naeil: state of the art person recogniser

* Crop five different regions.

* Prepare a CNN pretrained on ImageNet.

* Finetune the network on PIPA with identity labels.
 Alternatively, finetune on a different

with a different surrogate task.

T‘ Region {Face[4], Head, Upper body, Full body, Scene }

{ default: PIPA[1], CACD[5] heads,
/7 CASIA[6] heads, PETA[3] pedestrians }

\Su rrogate task

{ default: Identity prediction,
Attribute prediction }

Recognition result

Method Accuracy «h , (RGB as feature)

Chance level 0.17% Wworks.

o, * State of the art result.
" Y d to PIPER[1]
PIPER[1] 83.05% - paredtorir ’

no pose estimation or

h+b 83.36%  gpecialised face feature is
naeil (17 cues) 86.78% uysed.

Analysis of cues
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* Upper body (u) is most informative.

* Finetuning gives ~10 pp gain.

* More data helps (h_ .4 he.cia)-

* Attribute prediction task helps (h; .11, Npetas)-
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Take person recognition cues from
different regions of image.

Day split testg
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Qualitative results

Original split
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New challenging experimental setups
for recognising a person across time.

New splits & Analysis
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Code & new splits at

New splits proposed

goo.gl/DKuhlY
Split Description

Original  As proposed by [1].

Album * Separate based on photo albums to which
they were uploaded.

Time * Use photo-taken-date EXIF metadata to
separate examples.

Day * Manually separate instances.

* Motivation: RGB feature gives 33.77% = Many
nearly identical training and test examples.

Do we need more examples per person?

* No. Performance nearly saturates after ~20
training examples.

* Better features are needed.

dz;dy #training samples/identity
Which cues are helpful across time?

* Face and head cues are effective across time.
* Body and scene cues become weaker.

* Head cue with additional data (h_, 4, h_.sia)

covers almost all of the performance by naeil
in the day split.
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