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1. Introduction

Developing and engineering ML models for commercial
use (e.g., image recognition APIs) is a product of intense
time, money, and human effort — ranging from collecting a
massive annotated dataset to tuning the right model for the
task. Once developed, they are deployed (e.g., on devices
or internet) to function as blackboxes: input in, predictions
out. In this work, we ask: can one create a “knock-off”
of deployed ML models based solely on blackbox access?
We work towards purely stealing functionality of complex
blackbox models by making minimal assumptions.

We formulate model functionality stealing as a two-step
approach: (i) querying a set of input images using a strat-
egy [P to the blackbox victim model to obtain predictions;
and (ii) training a “knockoff” with queried image-prediction
pairs. What makes it particularly challenging in our sce-
nario is that the adversary does not have access nor knowl-
edge of the training image data distribution used to train the
victim model. The adversary’s goal is for the knockoff (cre-
ated using as few queries as possible) to compete with the
victim model at the victim’s task.

We make multiple remarkable observations: (a) query-
ing random images from a different distribution than that
of the blackbox training data results in a well-performing
knockoff; (b) this is possible even when the knockoff is
represented using a different architecture; and (c) our RL
approach additionally improves query sample efficiency in
certain settings and provides performance gains. We vali-
date model functionality stealing on a range of datasets and
tasks, as well as show that a reasonable knockoff of an im-
age analysis API could be created for as little as $30.

2. Learning to Knockoff

We now present the problem (§2.1) and our approach
(§2.2) to perform model functionality stealing.

2.1. Problem Statement

We set up the task as shown in Figure[I] Given blackbox
access to a “victim” model Fy : X — ), the (adversary’s)
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Figure 1: Problem Statement. Laying out the task of model
functionality stealing in the view of two players - victim V' and
adversary A. We group adversary’s moves into (a) Transfer Set
Construction (b) Training Knockoff F's.

goal is to replicate its functionality using “knockoff”” model
F4 of the adversary. We evaluate the knockoff performance
on the victim’s held-out test set Di™.

Assumptions We assume a CNN blackbox y = Fy (),
which given any image € X returns a K-dim posterior
probability vector y € [0,1]%, >,y = 1. We also con-
sider relaxations, such as by truncating y. We assume re-
maining aspects to be unknown to the adversary: (i) the
internals of Fy e.g., hyperparameters or architecture; (ii)
the data Dy = {(x;,y:)},x; ~ Py (X) used to train and
evaluate the model; and (iii) semantics over the K classes.

Threat Model To train the knockoff model, the adver-
sary: (i) interactively queries images {x; ~ P4(X)} using
strategy 7 to obtain a “transfer set” of images and pseudo-
labels {(x;, Fy/(x;))}2.; and (ii) selects an architecture
F'4 for the knockoff and trains it to mimic the behaviour of
Fy, on the transfer set.

2.2. Approach

We briefly introduce our approach here and refer the
reader to the main paper [/1] for more details.
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Figure 2: Performance of the knockoff at various budgets. Across choices of adversary’s image distribution (P4) and sampling strategy
m. -- represents accuracy of blackbox Fy and - represents chance-level performance.
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Figure 3: Qualitative Results. (a) Samples from the transfer set
{ (@, Fv(x:))}, @ ~ Pa(X)) displayed for two output classes:
‘Homer Simpson’ and ‘Harris Sparrow’. (b) With the knockoff
F4 trained on the transfer set, we visualize its predictions on vic-
tim’s test set ({(@i, Fa(x;))}, zi ~ Dy"). Ground truth labels
are underlined. Objects from these classes, among numerous oth-
ers, were never encountered while training F'4.

Selecting P4 (X). The adversary first selects an image
distribution to sample images. We consider this to be a large
discrete set of images. For instance, one of the distributions
P4 we consider is 1.2M images of ImageNet.

Transfer Set Construction. We consider two strategies 7
to construct the transfer set of blackbox input-output pairs
{(zi, Fy (z;))}£.,, where {x; © Pa(X)}: (i) random: at
each time-step, the adversary queries an image drawn i.i.d
from P4(X); and (ii) adaptive: we incorporate a feed-
back signal as a result of querying an image at each time-
step. This signal is used to learn a policy 7 in order to im-
prove sample-efficiency of queries.

Training Knockoff F4. Given the transfer set, we now
train a knockoff F4 to imitate the image-prediction pairs.
But, how do we model F4? While some works argue to
choose the architecture and hyperparameters by reverse-
engineering blackbox, we find it orthogonal to our require-
ment of simply stealing the functionality. Instead, we model
F'4 with a reasonably complex architecture e.g., VGG or
ResNet. Existing findings in knowledge distillation and
model compression indicate robustness to choice of reason-
ably complex (student) models. We investigate the choice

under weaker knowledge of the teacher (Fy-) e.g., training
data and architecture is unknown.

3. Teaser Results

We evaluate model functionality stealing of four black-
box models: Caltech256 (classification of 256 general ob-
ject categories), CUB-200 (200 bird species), Indoor Scenes
(67 indoor scenes), and Diabetic Retinopathy (5 diabetic
retinopathy scales). Within this setup, we highlight some
remarkable observations from the main paper: (i) effec-
tive model stealing of complex models: As can be seen in
Figure [2} our stealing attacks (colored lines) in all cases
achieve over (.82 test accuracy of the victim model (gray
dashed line). This is in particular remarkable, given that
the knockoff model has never encountered images of nu-
merous classes that appear at test-time e.g., >90% of the
bird classes in CUBS200. As an example, consider the clas-
sification of class ‘Homer Simpson’ in Caltech256. The
knockoff achieves 92% test-time accuracy for this class
(test-time predictions in Fig. [3p), albeit learning only from
non-‘Homer Simpson’ images (most confident transfer set
examples in Fig. [Bh); (ii) adaptive improves sample-
efficiency: e.g., while random reaches 68.3% at B=60Kk,
adaptive achieves this 6x quicker at B=10k. However,
generally, we surprisingly find random to be highly compet-
itive baseline; (iii) stealing transfers across architectures:
for any reasonably complex choice of F)4 (e.g., Resnet-34),
we consistently achieved over 0.95x accuracy for various
choices of Fy; and (iv) stealing is possible in spite of sim-
ple defenses: we observed 0.76 x knockoff accuracy on Cal-
tech256 in spite of blackbox returning argmax predictions.

Our results indicate an inexpensive knockoff can be
trained which exhibits strong performance, using only a rea-
sonable number of victim API queries. Thereby, circum-
venting monetary and labour costs of collecting images, ob-
taining expert annotations, and tuning a model.
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