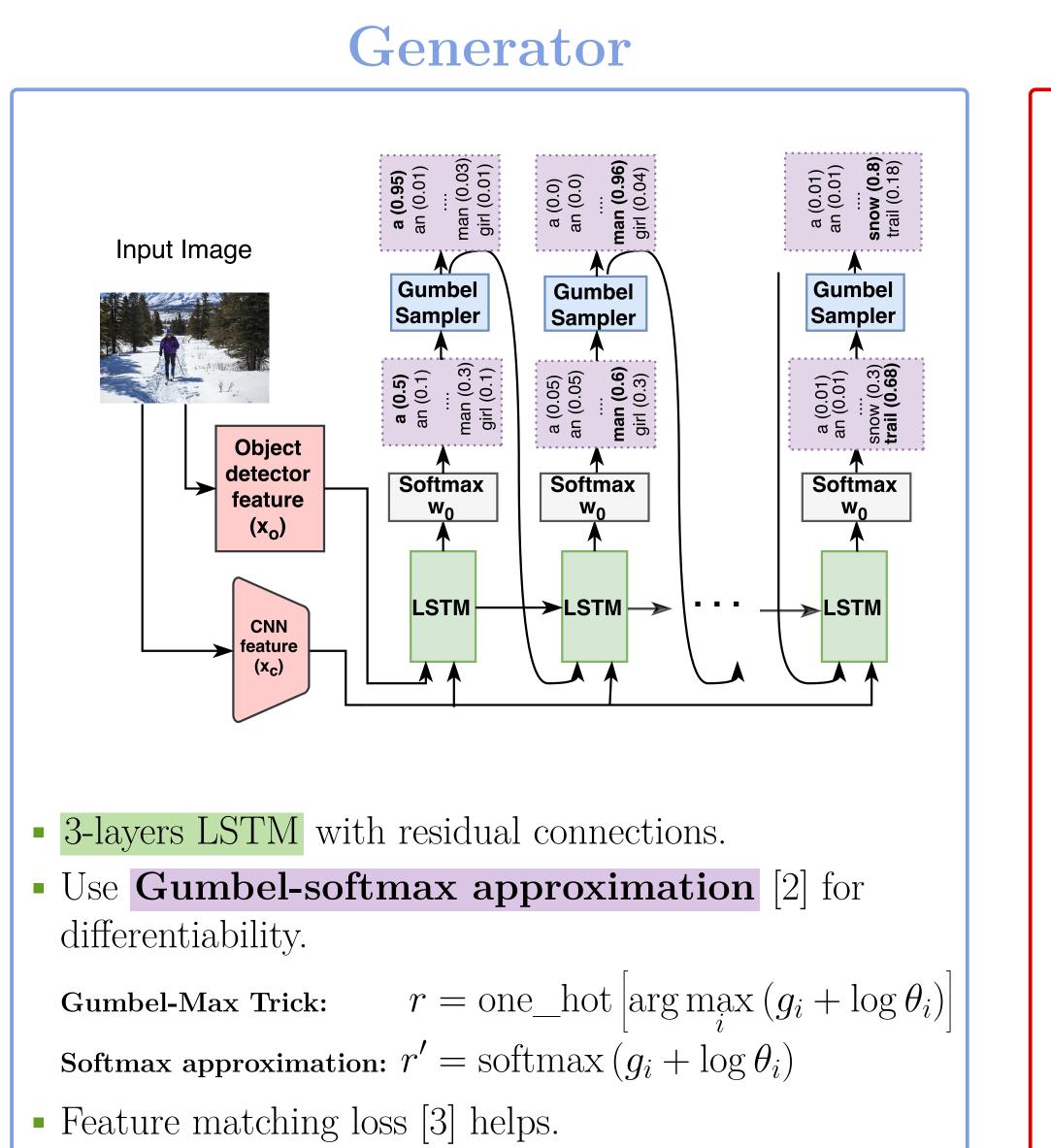
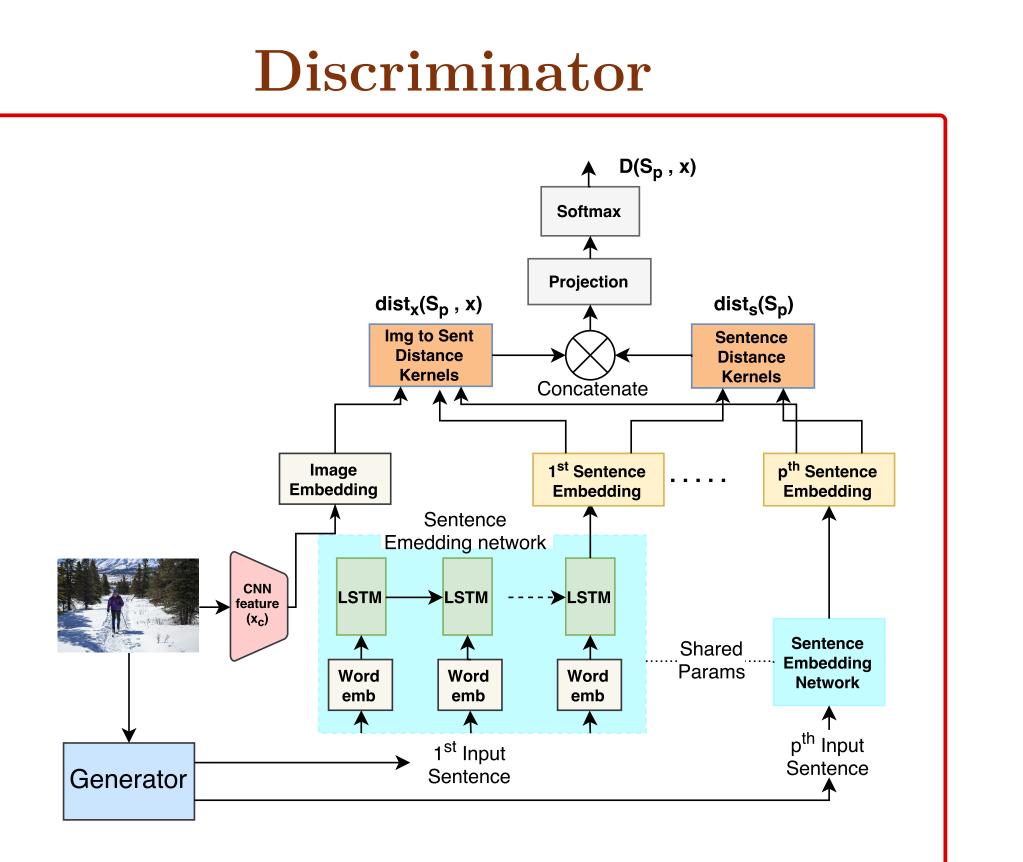

Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training

Rakshith Shetty¹, Marcus Rohrbach^{2,3}, Lisa Anne Hendricks², Mario Fritz¹, Bernt Schiele¹ ¹Max Planck Institute for Informatics ²UC Berkeley EECS ³Facebook AI Research




Core Idea:

- Use GAN [1] framework to better match the data distribution.
- Generator produces multiple captions for an image by sampling.
- Discriminator scores this caption set on correctness and diversity.

while maintaining same level of correctness.

Model

- Evaluate a set of five captions per image.
- Compute two distances with image and sentence embeddings:
- Image to sentence distances for semantic correctness
- Intra-sentence distances for sufficient diversity

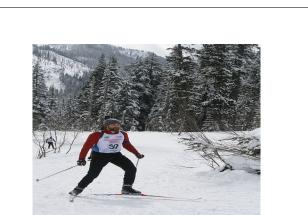
Met _____

Base

Base

Adv-

Adv


Hum capt[:]

Diverse captions on similar images

a group of people formal wear

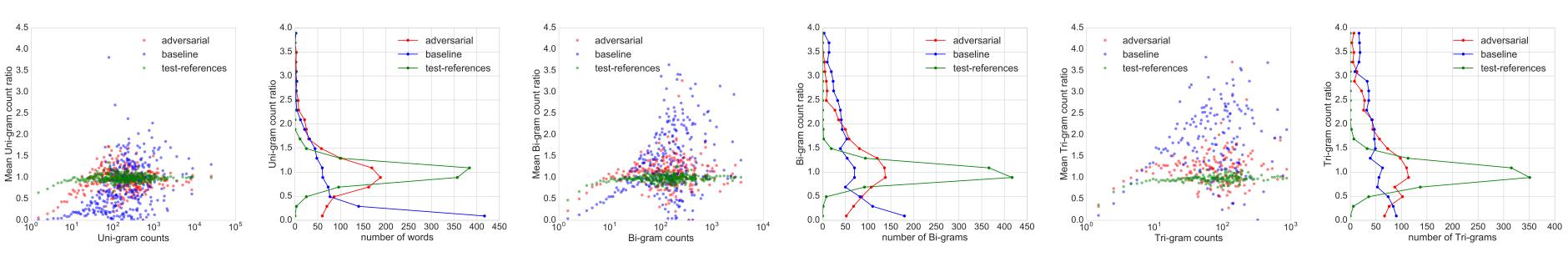
a skier is headed down a cross country skier makes his way through the snow

Ours a surfer rides a large wave in the ocean

Baseline

Ours a bathroom with a walk in shower and a sink

Baseline



a surfer is falling off his a person on a board as he rides a wave

a dirty bathroom with a view of a very nice a broken toilet and sink looking rest room

Quantitative Results

Adversarial model better matches the *n*-gram distribution of the dataset. Figure compares *n*-gram count ratios of the generated captions to true test set captions. Scatter plots show the *n*-gram count-ratios as a function of counts on training set. Adjoining the scatter plots on the right are the histogram plots of the count-ratios.

				Vocab-	% Novel
n	Div-1	Div-2	mBleu-4	ulary	Sentences
1 of 5				756	34.18
5 of 5	0.28	0.38	0.78	1085	44.27
1 of 5				839	52.04
5 of 5	0.31	0.44	0.68	1460	55.24
1 of 5	_	_		1508	68.62
5 of 5	0.34	0.44	0.70	2176	72.53
1 of 5	_	_		1616	73.92
5 of 5	0.41	0.55	0.51	$\boldsymbol{2671}$	79.84
1 of 5			_	3347	92.80
5 of 5	0.53	0.74	0.20	7253	95.05
	1 of 5 5 of 5 1 of 5	$\begin{array}{c ccccc} 1 & {\rm of} \ 5 & - \\ 5 & {\rm of} \ 5 & 0.28 \\ \hline 1 & {\rm of} \ 5 & - \\ 5 & {\rm of} \ 5 & 0.31 \\ \hline 1 & {\rm of} \ 5 & - \\ 5 & {\rm of} \ 5 & 0.34 \\ \hline 1 & {\rm of} \ 5 & - \\ 5 & {\rm of} \ 5 & 0.41 \\ \hline 1 & {\rm of} \ 5 & - \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nDiv-1Div-2mBleu-4ulary1 of 5 $ -$ 7565 of 50.280.380.7810851 of 5 $ -$ 8395 of 50.310.440.6814601 of 5 $ -$ 15085 of 50.340.440.7021761 of 5 $ -$ 16165 of 50.410.550.5126711 of 5 $ -$ 3347

Adversarial model has significantly better diversity statistics. Div-1 and Div-2 measure the n-gram uniqueness in the 5 samples. mBleu-4 measures the similarity in terms of Bleu-4. Vocabulary size increases by 100% and 82%when using beamsearch and sampling respectively with the adversarial model

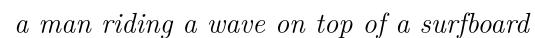
Con

Human evaluation shows that the adversarial model is on par to the **baseline model in correctness.** Five human evaluators were asked to pick the more correct caption of the two on 482 random images.

Image Feature	Evalset size (p)	Feature Matching	Meteor	Div-2	Vocab. Size
Baseline Model	with VGG feature	res	0.247	0.44	1367
VGG	1	No	0.179	0.40	812
VGG	5	No	0.197	0.52	1810
VGG	5	yes	0.207	0.59	2547
ResNet	5	yes	0.236	0.55	2671

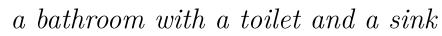
Ablation study shows that multi-caption evaluation and feature matching are key to increasing diversity Comparison done on the validation set. Switching to ResNet features help improve semantics

References


[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in NIPS, 2014. [2] E. Jang, S. Gu, and B. Poole, "Categorical reparameterization with gumbel-softmax," in *ICLR*, 2016.

[3] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, "Improved techniques for training gans," in NIPS, 2016.

surfboard riding a wave surfboard in rough



a man surfing on a waters

a surfer rides a small wave in the ocean

a white toilet in a public restroom stall

a small bathroom has a broken toilet and a broken sink

mparison	Adversarial - Better	Adversarial - Worse
msearch	36.9	34.8
npling	35.7	33.2