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Summary

•Context is useful but overuse can be harmful. Side
effects include object hallucination and blindness to
existing objects

•We present an automatic test-case generation
system to quantify context dependency and identify
failure modes

•Object removal is done using ground truth masks and an
in-painter trained for adversarial scene editing [1]

•For example, removing cars causes segmenation models
to fail to distinguish between road and sidewalk classes

•Data augmentation with generated samples improves
robustness in both classification and segmentation
networks without sacrificing performance.

Automatically Testing Robustness to Context

Image Classification
•Use object removal to create a context without
object image and a set of object without
context images

•Count the number of violations to compute

V min(ci) =
∑
I 1 [(mincont Sci(I − cont)) < Sci(I − ci)]

∑
I 1[ci ∈ I ]
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Semantic Segmentation
•Run segmentation on original and edited image
with one object removed

•Measure the change in IoU for other objects

AR(ci, cj) =
∑
I 1

∣∣∣∣∣∣∆IoUcicj

∣∣∣∣∣∣ ≥ α


∑
I 1 [ci, cj ∈ I ]

•AR matrix captures inter-class dependency
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Data augmentation

Image Classification
• DA-Rand : Randomly sample object to remove and use standard cross entropy loss
• DA-Const: Explicitly enforce constraints using hinge loss

Lh(I) = ∑
ci∈I

max
0, Sci(I − ci)− min

cj,j 6=i
Sci(I − cj)



Semantic Segmentation
• DA-Size: Sample the removed object inversely proportional to the area
• DA-HardNeg: Sample the removed object inversely proportional to the model loss

Context in Semantic Segmentation

Original: I Upernet Ours Original: I Upernet Ours

Edited: I − car Upernet Ours Edited: I − sign Upernet Ours

Original: I Upernet Ours Original: I Upernet Ours

Edited: I − tree Upernet Ours Edited: I − tree Upernet Ours

Quantitative results and ablations

Encoder Decoder mIoU
Sensitivity of
sidewalk to car

mobilenet conv [2] 0.324 18%
resnet-18 ppm [3] 0.380 18%
resnet-50 ppm [3] 0.408 20%
resnet-101 upernet [2] 0.420 22%
*resnet-50 upernet [2] 0.377 22%
*resnet-50 + DA-HardNeg upernet [2] 0.385 14%
Better performing architectures are still sensitive to context
changes. Our data augmentation increases the robustness to context changes.
Models marked in * are trained with smaller batchsize.

Model all (407 images) with car (258) without car (149)
road sidewalk road sidewalk road sidewalk

Upernet 0.81 0.59 0.86 0.67 0.68 0.40
DA-HardNeg 0.82 0.60 0.86 0.65 0.72 0.46
Context sensitivty is seen in real data as well Looking at subsets of real
images with and without car, we see that the segmetation performance of road
and sidewalk is significantly worse without car. Data augmentation improves this

Original: I Upernet Ours

I − car Upernet Ours

I − car (flipped mask) Upernet Ours
Verifying the source of sensitivity Image edited using flipped mask adds
same amount of in-painted pixels but does not affect the segmentation model.

Model mIoU Accuracy
Upernet [2] 0.377 78.31
DA-Size 0.377 78.25
DA-HardNeg 0.385 78.47

Performance comparison on ADE20k dataset.Hard negative
data augmentation performs better than baseline and DA-size.
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Removed object class
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Visualizing frequency with which classes are affected by
removal of other objects. Y-axis are the affected objects and the
x-axis shows the removed objects

Context in Classification
Original Object w/o Context Context w/o Object

Regular S(keyboard) = 1.99E ≥ S(keyboard) = 4.67E
Ours: DA-Const S(keyboard) = 3.40 S(keyboard) = 1.39

Regular S(sink) = −0.74E ≥ S(sink) = 0.60E
Ours: DA-Const S(sink) = −0.01 S(sink) = −0.24

Regular S(couch) = 0.63E ≥ S(couch) = 2.09E
Ours: DA-Const S(couch) = 0.73 S(couch) = −0.02

Examples of context sensitivity in classification. Baseline
classifier weighs the contextual evidence more than the actual object.
Data augmentation helps model learn to correctly rank these images

Model Training
Data

COCO test set Robustness Metrics UnRel
Co-occur ↑ Single ↑ V min ↓ V mean ↓ dataset ↑

Baseline Full (39k) 0.57 0.62 34% 24% 0.50
DA-Rand Full (39k) 0.58 0.65 32% 22% 0.54
DA-Const Full (39k) 0.58 0.63 25% 14% 0.52
Baseline Co-occur (30k) 0.55 0.58 34% 24% 0.46
DA-Rand Co-occur (30k) 0.57 0.60 31% 21% 0.49
DA-Const Co-occur (30k) 0.57 0.60 27% 15% 0.51

Performance comparison on ADE20k dataset.Hard negative data
augmentation performs better than baseline and DA-size.
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Effect of data augmentation on robustness. Classes like ‘mouse’, ‘key-
board’, ‘sports ball’ get significantly more robust with data augmentation.
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