Learning People Detectors for Tracking in Crowded Scenes

Siyu Tang! Mykhaylo Andriluka! Anton Milan? Konrad Schindler® Stefan Roth? Bernt Schiele?
’TU Darmstadt 3ETH Zirich

MAX-PLANCK-GESELLSCHAFT

1Max Planck Institute for Informatics

IIIIJII

max planck institut
informatik

Learn people detectors for tracking

Goal Joint detection

Experiments

Design occlusion patterns

e Manually design regular occlusion combinations that
appear frequently due to long-term occlusions and
therefore most relevant for tracking

e Detect and track all the people in the crowded
street scenes

Structural learning for joint detection

e Given training images, learning the parameters of the
joint detection model is formulated as the optimization
problem [2]:
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Input:
Baseline detector
Multi-target tracker
Synthetic training image pool

e Person detectors used for tracking are typically

trained independently from the tracker
= Train detectors with trackers in the loop, focusing on

Joint detector

e Teach the model to distinguish
a single person and a highly
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