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Abstract

People tracking in crowded real-world scenes is chal-
lenging due to frequent and long-term occlusions. Recent
tracking methods obtain the image evidence from object
(people) detectors, but typically use off-the-shelf detectors
and treat them as black box components. In this paper
we argue that for best performance one should explicitly
train people detectors on failure cases of the overall tracker
instead. To that end, we first propose a novel joint peo-
ple detector that combines a state-of-the-art single person
detector with a detector for pairs of people, which explic-
itly exploits common patterns of person-person occlusions
across multiple viewpoints that are a common failure case
for tracking in crowded scenes. To explicitly address re-
maining failure cases of the tracker we explore two methods.
First, we analyze typical failure cases of trackers and train
a detector explicitly on those failure cases. And second, we
train the detector with the people tracker in the loop, focus-
ing on the most common tracker failures. We show that our
joint multi-person detector significantly improves both de-
tection accuracy as well as tracker performance, improving
the state-of-the-art on standard benchmarks.

1. Introduction
People detection is a key building block of most state-

of-the-art people tracking methods [3, 21–23]. Although
the performance of people detectors has improved tremen-
dously in recent years, detecting partially occluded people
remains a weakness of current approaches [8]. This is also
a key limiting factor when tracking people in crowded envi-
ronments, such as typical street scenes, where many people
remain occluded for long periods of time, or may not even
become fully visible for the entire duration of the sequence.

The starting point of this paper is the observation that
people detectors used for tracking are typically trained inde-
pendently from the tracker, and are thus not specifically tai-
lored for best tracking performance. In contrast, the present
work aims to train people detectors explicitly to address
failure cases of tracking in order to improve overall tracking

Figure 1. Tracking results using the proposed joint detector on four
public datasets: (clockwise) TUD-Crossing, ParkingLot, PETS
S2.L2 and PETS S1.L2.

performance. However, this is not straight-forward, since
many tracking failures are related to frequent and long-term
occlusions – a typical failure case also for people detectors.

We address this problem in two steps: First, we target
the limitations of people detection in crowded street scenes
with many occlusions itself. Occlusion handling is a no-
toriously difficult problem in computer vision and generic
solutions are far from being available. Yet for certain cases,
successful approaches have been developed that train effec-
tive detectors for object compositions [7, 10, 17], which can
then be decoded into individual object detections. Their
key rationale is that objects in such compositions exhibit
regularities that can be exploited. We build on these ideas,
focusing on person-person occlusions, which are the domi-
nant occlusion type in crowded street scenes. Our first con-
tribution is a novel structural loss-based training approach
for a joint person detector, based on structured SVMs.

In the second step of our approach, we specifically focus
on patterns that are relevant to improving tracking perfor-
mance. In general, person-person occlusions may result in a
large variety of appearance patterns, yet not all of these pat-
terns are necessarily frequent in typical street scenes. Not
all of these patterns, furthermore, result in discriminative
appearance that can be detected reliably in cluttered im-
ages. Finally, some of the person-person occlusion cases
are already handled well by existing tracking approaches
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(a) Double person outscores
single person with �VOC

(b) Double person outscores
single person with �VOC+DT

Figure 2. Structured training of joint people detectors: Green –
correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

ing box hypothesis, aided by the model parts. The initial set
of detections is then refined by non-maximum suppression.
Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15] for
our joint person detection model. Given a set of training
images {Ii|i = 1, . . . , N}, learning the parameters of the
DPM, �, is then formulated as the optimization problem

min

�,⇠�0

1

2

k�k2 + C

N

NX

n=1

⇠i (1)

sb.t. max

h
h�,�(Ii, yi, h)i �max

ĥ
h�,�(Ii, ŷ, ˆh)i

� �(yi, ŷ)� ⇠i, 8ŷ 2 Y,

Figure 3. Detection performance on TUD-Crossing.

Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0
Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0
Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0
Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing.

where ⇠i are slack variables modeling the margin violations.
The structured output yi = (yli, y

b
i ) includes the class label

yli 2 {1,�1}, as well as the 2D bounding box position ybi .
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of joint people
detectors is that the model learns that a detection with larger
overlap with the ground truth bounding box has higher score
than a detection with lower overlap. Hence, the single per-
son component should also have a lower score than the
double person component on double person examples (see
Fig 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our
joint detector with the joint detector proposed in [17], we
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(a) Double person outscores
single person with �VOC

(b) Double person outscores
single person with �VOC+DT

Figure 2. Structured training of joint people detectors: Green –
correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

ing box hypothesis, aided by the model parts. The initial set
of detections is then refined by non-maximum suppression.
Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15] for
our joint person detection model. Given a set of training
images {Ii|i = 1, . . . , N}, learning the parameters of the
DPM, �, is then formulated as the optimization problem
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where ⇠i are slack variables modeling the margin violations.
The structured output yi = (yli, y

b
i ) includes the class label

yli 2 {1,�1}, as well as the 2D bounding box position ybi .
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of joint people
detectors is that the model learns that a detection with larger
overlap with the ground truth bounding box has higher score
than a detection with lower overlap. Hence, the single per-
son component should also have a lower score than the
double person component on double person examples (see
Fig 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our
joint detector with the joint detector proposed in [17], we
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Figure 2. Structured training of joint people detectors: Green –
correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

ing box hypothesis, aided by the model parts. The initial set
of detections is then refined by non-maximum suppression.
Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
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tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
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dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.
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Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15] for
our joint person detection model. Given a set of training
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where ⇠i are slack variables modeling the margin violations.
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yli 2 {1,�1}, as well as the 2D bounding box position ybi .
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)
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0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
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(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of joint people
detectors is that the model learns that a detection with larger
overlap with the ground truth bounding box has higher score
than a detection with lower overlap. Hence, the single per-
son component should also have a lower score than the
double person component on double person examples (see
Fig 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss
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Algorithm 1 Joint detector learning for tracking
Input:

Baseline detector
Multi-target tracker
Synthetic training image pool
Mining sequence

Output:
Joint detector optimized for multi-target tracking

1: run baseline detector on mining sequence
2: run target tracker on mining sequence, based on the detection

result from baseline detector
3: repeat
4: collect missing recall from the tracking result
5: cluster occlusion patterns
6: generate training images for mined patterns
7: train a joint detector with new training images
8: run the joint detector on mining sequence
9: run the target tracker on mining sequence

10: until tracking results converge

Tracking evaluation (step 4): Missed targets are the
main source of failure in crowded scenarios. We, there-
fore, concentrate on this error type. To that end, we extract
all missed targets, evaluated by the standard CLEAR MOT
metrics [5] for the next step.

Occlusion pattern mining (step 5): The majority of
missed targets are occlusion related. For our mining se-
quence, the total number of missed targets is 1905, but
only 141 of them are not caused by occlusions (Fig. 5(a)).
Missed targets can be occluders and/or occludees for a pair
of persons (Fig. 5(b)), or within a group of multiple people
(Fig. 5(c)). In this paper, we concentrate on mining occlu-
sion patterns for pairs of persons and consider the multi-
ple people situation as a special case of a person pair, aug-
mented by distractions from surroundings. Note that our al-
gorithm can be easily generalized to multiple people occlu-
sion patterns given sufficient amount of mining sequences
that contain certain distributions of multi-people occlusion
patterns. From the missed targets (step 4), we determine the
problematic occlusion patterns and cluster them in terms of
the relative position of the occluder/occludee pair. We only
consider the most dominant cluster. Fig. 5(d) and 5(e) show
the dominant occlusion pattern of the first and second min-
ing iteration. Note that we only mine occlusion patterns and
no additional image information (see next step).

Synthetic training example generation (step 6): We
generate synthetic training images for the mined occlusion
pattern using the same synthetic image pool as in Sec. 4.1,
which requires the relative position of a person pair, as well
as the orientation of each person. To that end, we sample
the relative position of a person pair from a Gaussian dis-
tribution centered on the dominant relative position cluster

(a) (b) (c) (d) (e)

Figure 5. Missed targets from PETS S2.L2 mining sequence and
mined occlusion patterns: (a) No person nearby; (b) interfered by
one person; (c) interfered by more persons; (d) mined occlusion
pattern – 1st iteration; (e) mined occlusion pattern – 2nd iteration.

from step 5. We further extract a dominant orientation of
the mined examples for occluders and occludees. Training
image generation, in principle, thus enables us to model ar-
bitrary occlusion patterns in each iteration. We generate 200
images for every new occlusion pattern, which amounts to
the same number of training images as we used in the con-
text of manually designed occlusion patterns. The major
benefit of learning these patterns is that more training im-
ages can be easily generated for the next iteration, specifi-
cally for those relevant cases that still remain unsolved.
Joint detector training with mined occlusion patterns
(step 7): The single-person component of the joint detec-
tor is initialized with the same training images as the base-
line detector. For each iteration, we introduce a new double-
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using this baseline detector are also quite competitive and
already outperform a state-of-the-art method [2] on S1.L2.
Joint detector with designed occlusion patterns (4.1).
Next, we evaluate the performance of our joint detector with
manually designed occlusion patterns (see Fig. 6). The joint
detector (blue) shows its advantage by outperforming the
single-person detector on all sequences. It achieves 10%
more recall at high precision for S1.L2 and ParkingLot. For
the S2.L2 test sequence, the joint detector outperforms the
baseline detector by a large margin from 0.9 precision level.
These detection results suggest that the joint detection is
much more powerful than the single detector; the designed
occlusion patterns correspond to compact appearance and
can be detected well.

The performance boost is also reflected in the track-
ing evaluation. Using the joint detector (Joint-Design)
yields a remarkable performance boost on the S2.L2 test
sequence (reaching 57.6% MOTA), improving MOTA by
10.1% points and MOTP by 1.7% points at the same time.
It also improves Recall by 4.2 and Precision by 7.9 com-
pared to the single-person detector (Single DPM). On the
S1.L2 and the ParkingLot sequences, the joint detector also
outperforms the single-person detector with a significantly
higher recall achieved by detecting more occluded targets.

By carefully analyzing and designing the occlusion pat-
terns, we obtain very competitive results on publicly avail-
able sequences, both in terms of detection and tracking,
which shows the advantage of the proposed joint detector
for tracking people in crowded scenes.
Joint detector with learned occlusion patterns (4.2). We
report the joint detector performance for one and two min-
ing iterations. As mentioned above, we employ the first half

of S2.L2 (frames 1–218) as mining sequence, extracting oc-
clusion patterns, but no further image information.

On the S2.L2 test sequence (frames 219–436), which is
more similar to the mining sequence than the other two se-
quences, our joint detector (black, Joint-Learn 1st, 56,5%
MOTA) is nearly on par with the hand-designed patterns af-
ter the first iteration, as shown in Fig. 6(a). This is because
the most dominant occlusion pattern is captured and learned
by the joint detector already. For the second iteration (cyan,
Joint-Learn 2nd), we also achieve higher recall on the S2.L2
test sequence, but the precision slightly decreases because
the dominant occlusion pattern of the second iteration only
contains about 48 missed targets, compared to 5861 ground
truth annotations, thus limiting potential performance im-
provement and introducing potential false positives.

Additionally, we compare our tracking results with [2]
and [6] on the S2.L2 sequence, as shown in Tab. 6(a). They
report tracking performance for the whole sequence, ours is
for the second half of the sequence. After the second itera-
tion of mining, we obtain a tracking performance of 56.9%
MOTA, significantly outperforming the other methods2.

Next, we verify the generalization ability of our algo-
rithm on two more sequences: PETS S1.L2, which is ex-
tremely crowded, and the ParkingLot sequence, which con-
tains relatively few occlusions. On PETS S1.L2, the learned
joint detector (black) is already slightly better than the Joint-
Design detector after the first iteration, as shown in Fig.
6(b). The second iteration (cyan) once again improves the
performance, both in terms of recall and precision. The
tracking result is also very promising. Directly mining

2Note that, for the first half of the S2.L2 sequence where we mine the
occlusion patterns, we even achieve 63.8% MOTA.
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Next, we evaluate the performance of our joint detector with
manually designed occlusion patterns (see Fig. 6). The joint
detector (blue) shows its advantage by outperforming the
single-person detector on all sequences. It achieves 10%
more recall at high precision for S1.L2 and ParkingLot. For
the S2.L2 test sequence, the joint detector outperforms the
baseline detector by a large margin from 0.9 precision level.
These detection results suggest that the joint detection is
much more powerful than the single detector; the designed
occlusion patterns correspond to compact appearance and
can be detected well.

The performance boost is also reflected in the track-
ing evaluation. Using the joint detector (Joint-Design)
yields a remarkable performance boost on the S2.L2 test
sequence (reaching 57.6% MOTA), improving MOTA by
10.1% points and MOTP by 1.7% points at the same time.
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pared to the single-person detector (Single DPM). On the
S1.L2 and the ParkingLot sequences, the joint detector also
outperforms the single-person detector with a significantly
higher recall achieved by detecting more occluded targets.
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terns, we obtain very competitive results on publicly avail-
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which shows the advantage of the proposed joint detector
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contains about 48 missed targets, compared to 5861 ground
truth annotations, thus limiting potential performance im-
provement and introducing potential false positives.

Additionally, we compare our tracking results with [2]
and [6] on the S2.L2 sequence, as shown in Tab. 6(a). They
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tion of mining, we obtain a tracking performance of 56.9%
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Next, we evaluate the performance of our joint detector with
manually designed occlusion patterns (see Fig. 6). The joint
detector (blue) shows its advantage by outperforming the
single-person detector on all sequences. It achieves 10%
more recall at high precision for S1.L2 and ParkingLot. For
the S2.L2 test sequence, the joint detector outperforms the
baseline detector by a large margin from 0.9 precision level.
These detection results suggest that the joint detection is
much more powerful than the single detector; the designed
occlusion patterns correspond to compact appearance and
can be detected well.

The performance boost is also reflected in the track-
ing evaluation. Using the joint detector (Joint-Design)
yields a remarkable performance boost on the S2.L2 test
sequence (reaching 57.6% MOTA), improving MOTA by
10.1% points and MOTP by 1.7% points at the same time.
It also improves Recall by 4.2 and Precision by 7.9 com-
pared to the single-person detector (Single DPM). On the
S1.L2 and the ParkingLot sequences, the joint detector also
outperforms the single-person detector with a significantly
higher recall achieved by detecting more occluded targets.
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Joint-Learn 2nd), we also achieve higher recall on the S2.L2
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pared to the single-person detector (Single DPM). On the
S1.L2 and the ParkingLot sequences, the joint detector also
outperforms the single-person detector with a significantly
higher recall achieved by detecting more occluded targets.
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Joint-Learn 2nd), we also achieve higher recall on the S2.L2
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contains about 48 missed targets, compared to 5861 ground
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joint detector (black) is already slightly better than the Joint-
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Experiments

Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0
Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0
Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0
Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing evaluated by
recall (Rcll), precision (Prcsn) and standard CLEAR MOT met-
rics [5], including Multi-Object Tracking Accuracy (MOTA) and
Tracking Precision (MOTP). MT and ML show the number of
mostly tracked and mostly lost trajectories, respectively [20].

3. Multi-Target Tracking
Our proposed detector learning algorithm (Sec. 4) is

generic and can, in principle, be employed in combination
with any tracking-by-detection method. Here, we use a re-
cent multi-target tracker based on continuous energy mini-
mization [2]. The tracker requires as input a set of person
detections in a video sequence, and infers all trajectories
simultaneously by minimizing a high-dimensional, contin-
uous energy function over all trajectories. The energy con-
sists of a data term, measuring the distance between the tra-
jectories and the detections, and several priors that assess
the (physical) plausibility of the trajectories. We use a fixed
parameter setting throughout all experiments. Note that the
employed tracking approach does not include any explicit
occlusion handling. It is thus important to consider occlu-
sions directly at the detector level, so as to provide more
reliable information to the tracker.
Baseline results. Table 1 shows tracking results on the
TUD-Crossing sequence [1], using various detector vari-
ants as described above. As expected, tracking based on the
output of the joint detector shows improved performance
compared to the single-person DPM detector. Note that the
side-view joint detector of Tang et al. [17] was specifically
designed to handle the occlusion pattern prevalent in se-
quences of this type. Even so, structured learning with a
detection type variable slightly increases the multi-object
tracking accuracy (MOTA, [5]). This experiment is meant
to serve as a proof of concept and demonstrate the validity
of the joint people detector. Please refer to Sec. 5 for an
extensive experimental study on more challenging datasets.

4. Learning People Detectors for Tracking
So far we have shown that the proposed structured learn-

ing approach for training joint people detectors shows sig-
nificant improvements for detection of occluded people in
side-view street scenes. This suggests the potential of lever-
aging characteristic appearance patterns of person/person
pairs also for detecting occluded people in more general set-
tings. However, the generalization of this idea to crowded
scenes with people walking in arbitrary directions is rather
challenging due to the vast amount of possible person-
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Figure 4. Bird’s eye view of occluded person’s state space (left).
Synthetically generated training images for different occlusion
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person occlusion situations. This variation may arise from
several factors, such as people’s body articulation, or their
position and orientation relative to the camera. The number
of putative occlusion patterns is exponential in the number
of factors. The crucial point here is, however, that not all
of them are equally relevant for successful tracking. For ex-
ample, short term occlusions resulting from people cross-
ing each other’s way are frequent, but can be often easily
resolved by modern tracking algorithms. Therefore, find-
ing occlusion patterns that are relevant in practice in order
to reduce the modeling space is essential for applying joint
person detectors for tracking in general crowded scenes.

We now propose two methods for discovering occlusion
patterns for people walking in arbitrary directions by (a)
manually designing regular occlusion combinations that ap-
pear frequently due to long-term occlusions and are, there-
fore, most relevant for tracking (Sec. 4.1); and (b) automat-
ically learning a joint detector that exploits the tracking per-
formance on occluded people and is explicitly optimized for
the tracking task (Sec. 4.2).

4.1. Designing occlusion patterns

For many state-of-the-art trackers, the most impor-
tant cases for improving tracking performance in crowded
scenes correspond to long-term partial occlusions.
Occlusion pattern quantization. We begin by quantizing
the space of possible occlusion patterns as shown in Fig. 4
(left). Given the position of the front person, we divide the
relative position of the occluded person with respect to the
occluder into 6 equal angular sectors. We consider the full
half circle of the sectors behind the occluder, and do not ex-
plicitly quantize the space of possible relative distances be-
tween subjects; instead we only consider a fixed threshold,
below which the second subject is significantly occluded.

In addition to quantizing the relative position, we also
quantize the orientation of the front person with respect to
the camera. To keep the number of constellations man-
ageable, we use four discrete directions corresponding to
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Figure 2. Structured training of joint people detectors: Green –
correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

ing box hypothesis, aided by the model parts. The initial set
of detections is then refined by non-maximum suppression.
Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15] for
our joint person detection model. Given a set of training
images {Ii|i = 1, . . . , N}, learning the parameters of the
DPM, �, is then formulated as the optimization problem

min
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Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0
Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0
Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0
Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing.

where ⇠i are slack variables modeling the margin violations.
The structured output yi = (yli, y

b
i ) includes the class label

yli 2 {1,�1}, as well as the 2D bounding box position ybi .
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of joint people
detectors is that the model learns that a detection with larger
overlap with the ground truth bounding box has higher score
than a detection with lower overlap. Hence, the single per-
son component should also have a lower score than the
double person component on double person examples (see
Fig 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our
joint detector with the joint detector proposed in [17], we
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correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15]
for our joint person detection model. Given a set of train-
ing images {Ii|i = 1, . . . , N} with structured output labels
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and the 2D bounding box position ybi , we formulate learning
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Figure 3. Detection performance on TUD-Crossing.

where ⇠i are slack variables modeling the margin violations.
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of a joint people
detector is that it learns that a detection with larger overlap
with the ground truth bounding box has higher score than a
detection with lower overlap. Hence, the single person com-
ponent should also have a lower score than the double per-
son component on double person examples (see Fig. 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our joint
detector with the joint detector proposed in [17], we explic-
itly train a side-view joint person detector using the same
synthetic training images1 and initialize the single and dou-
ble person detector components in the same way. Fig. 3
shows the benefit of the proposed structured training (Joint
detector, no det. type). By introducing the detection type
loss (Joint detector, ↵ = 0.5), the joint detector further im-
proves precision and achieves similar recall as [17]. At 95%
precision it outperforms [17] by 20.5% recall.

1 The data is available at www.d2.mpi-inf.mpg.de/datasets.
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Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15]
for our joint person detection model. Given a set of train-
ing images {Ii|i = 1, . . . , N} with structured output labels
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ĥ
h�,�(Ii, ŷ, ˆh)i
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where ⇠i are slack variables modeling the margin violations.
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of a joint people
detector is that it learns that a detection with larger overlap
with the ground truth bounding box has higher score than a
detection with lower overlap. Hence, the single person com-
ponent should also have a lower score than the double per-
son component on double person examples (see Fig. 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our joint
detector with the joint detector proposed in [17], we explic-
itly train a side-view joint person detector using the same
synthetic training images1 and initialize the single and dou-
ble person detector components in the same way. Fig. 3
shows the benefit of the proposed structured training (Joint
detector, no det. type). By introducing the detection type
loss (Joint detector, ↵ = 0.5), the joint detector further im-
proves precision and achieves similar recall as [17]. At 95%
precision it outperforms [17] by 20.5% recall.

1 The data is available at www.d2.mpi-inf.mpg.de/datasets.
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Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15]
for our joint person detection model. Given a set of train-
ing images {Ii|i = 1, . . . , N} with structured output labels
yi = (yli, y
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where ⇠i are slack variables modeling the margin violations.
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of a joint people
detector is that it learns that a detection with larger overlap
with the ground truth bounding box has higher score than a
detection with lower overlap. Hence, the single person com-
ponent should also have a lower score than the double per-
son component on double person examples (see Fig. 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our joint
detector with the joint detector proposed in [17], we explic-
itly train a side-view joint person detector using the same
synthetic training images1 and initialize the single and dou-
ble person detector components in the same way. Fig. 3
shows the benefit of the proposed structured training (Joint
detector, no det. type). By introducing the detection type
loss (Joint detector, ↵ = 0.5), the joint detector further im-
proves precision and achieves similar recall as [17]. At 95%
precision it outperforms [17] by 20.5% recall.

1 The data is available at www.d2.mpi-inf.mpg.de/datasets.
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Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15]
for our joint person detection model. Given a set of train-
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where ⇠i are slack variables modeling the margin violations.
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of a joint people
detector is that it learns that a detection with larger overlap
with the ground truth bounding box has higher score than a
detection with lower overlap. Hence, the single person com-
ponent should also have a lower score than the double per-
son component on double person examples (see Fig. 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our joint
detector with the joint detector proposed in [17], we explic-
itly train a side-view joint person detector using the same
synthetic training images1 and initialize the single and dou-
ble person detector components in the same way. Fig. 3
shows the benefit of the proposed structured training (Joint
detector, no det. type). By introducing the detection type
loss (Joint detector, ↵ = 0.5), the joint detector further im-
proves precision and achieves similar recall as [17]. At 95%
precision it outperforms [17] by 20.5% recall.

1 The data is available at www.d2.mpi-inf.mpg.de/datasets.
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Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0
Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0
Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0
Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing evaluated by
recall (Rcll), precision (Prcsn) and standard CLEAR MOT met-
rics [5], including Multi-Object Tracking Accuracy (MOTA) and
Tracking Precision (MOTP). MT and ML show the number of
mostly tracked and mostly lost trajectories, respectively [20].

3. Multi-Target Tracking
Our proposed detector learning algorithm (Sec. 4) is

generic and can, in principle, be employed in combination
with any tracking-by-detection method. Here, we use a re-
cent multi-target tracker based on continuous energy mini-
mization [2]. The tracker requires as input a set of person
detections in a video sequence, and infers all trajectories
simultaneously by minimizing a high-dimensional, contin-
uous energy function over all trajectories. The energy con-
sists of a data term, measuring the distance between the tra-
jectories and the detections, and several priors that assess
the (physical) plausibility of the trajectories. We use a fixed
parameter setting throughout all experiments. Note that the
employed tracking approach does not include any explicit
occlusion handling. It is thus important to consider occlu-
sions directly at the detector level, so as to provide more
reliable information to the tracker.
Baseline results. Table 1 shows tracking results on the
TUD-Crossing sequence [1], using various detector vari-
ants as described above. As expected, tracking based on the
output of the joint detector shows improved performance
compared to the single-person DPM detector. Note that the
side-view joint detector of Tang et al. [17] was specifically
designed to handle the occlusion pattern prevalent in se-
quences of this type. Even so, structured learning with a
detection type variable slightly increases the multi-object
tracking accuracy (MOTA, [5]). This experiment is meant
to serve as a proof of concept and demonstrate the validity
of the joint people detector. Please refer to Sec. 5 for an
extensive experimental study on more challenging datasets.

4. Learning People Detectors for Tracking
So far we have shown that the proposed structured learn-

ing approach for training joint people detectors shows sig-
nificant improvements for detection of occluded people in
side-view street scenes. This suggests the potential of lever-
aging characteristic appearance patterns of person/person
pairs also for detecting occluded people in more general set-
tings. However, the generalization of this idea to crowded
scenes with people walking in arbitrary directions is rather
challenging due to the vast amount of possible person-
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Figure 4. Bird’s eye view of occluded person’s state space (left).
Synthetically generated training images for different occlusion
patterns and walking directions (right).

person occlusion situations. This variation may arise from
several factors, such as people’s body articulation, or their
position and orientation relative to the camera. The number
of putative occlusion patterns is exponential in the number
of factors. The crucial point here is, however, that not all
of them are equally relevant for successful tracking. For ex-
ample, short term occlusions resulting from people cross-
ing each other’s way are frequent, but can be often easily
resolved by modern tracking algorithms. Therefore, find-
ing occlusion patterns that are relevant in practice in order
to reduce the modeling space is essential for applying joint
person detectors for tracking in general crowded scenes.

We now propose two methods for discovering occlusion
patterns for people walking in arbitrary directions by (a)
manually designing regular occlusion combinations that ap-
pear frequently due to long-term occlusions and are, there-
fore, most relevant for tracking (Sec. 4.1); and (b) automat-
ically learning a joint detector that exploits the tracking per-
formance on occluded people and is explicitly optimized for
the tracking task (Sec. 4.2).

4.1. Designing occlusion patterns

For many state-of-the-art trackers, the most impor-
tant cases for improving tracking performance in crowded
scenes correspond to long-term partial occlusions.
Occlusion pattern quantization. We begin by quantizing
the space of possible occlusion patterns as shown in Fig. 4
(left). Given the position of the front person, we divide the
relative position of the occluded person with respect to the
occluder into 6 equal angular sectors. We consider the full
half circle of the sectors behind the occluder, and do not ex-
plicitly quantize the space of possible relative distances be-
tween subjects; instead we only consider a fixed threshold,
below which the second subject is significantly occluded.

In addition to quantizing the relative position, we also
quantize the orientation of the front person with respect to
the camera. To keep the number of constellations man-
ageable, we use four discrete directions corresponding to
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(a) Double person outscores
single person with �VOC

(b) Double person outscores
single person with �VOC+DT

Figure 2. Structured training of joint people detectors: Green –
correct double-person bounding box. Red – single-person detec-
tion whose score should be lower by a margin.

ing box hypothesis, aided by the model parts. The initial set
of detections is then refined by non-maximum suppression.
Overview. We now use the DPM model to build a joint
people detector, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes. In do-
ing so, we go beyond previous work on joint people detec-
tion [17] in several significant ways: (1) The approach of
[17] focused on side-view occlusion patterns, but crowded
street scenes exhibit a large variation of possible person-
person occlusions caused by people’s body articulation or
their position and orientation relative to the camera. To ad-
dress this we explicitly integrate multi-view person/person
occlusion patterns into a joint DPM detector. (2) We pro-
pose a structured SVM formulation for joint person detec-
tion, enabling us to incorporate an appropriate structured
loss function. Aside from allowing to employ common loss
functions for detection (Jaccard index, a.k.a. VOC loss), this
allows us to leverage more advanced loss functions as well.
(3) We model our joint detector as a mixture of components
that capture appearance patterns of either a single person,
or a person/person occlusion pair. We then introduce an ex-
plicit variable modeling the detection type, with the goal of
enabling the joint detector to distinguish between a single
person and a highly occluded person pair. Incorporating the
detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance dif-
ference between a single person and a person/person pair.

Before going into detail on learning occlusion patterns in
Sec. 4, let us first turn to our basic structured SVM formu-
lation for joint person detection.
Structural learning for joint detection. We adapt the
structured SVM formulation for DPMs proposed in [15] for
our joint person detection model. Given a set of training
images {Ii|i = 1, . . . , N}, learning the parameters of the
DPM, �, is then formulated as the optimization problem

min

�,⇠�0

1

2

k�k2 + C

N

NX

n=1

⇠i (1)

sb.t. max

h
h�,�(Ii, yi, h)i �max

ĥ
h�,�(Ii, ŷ, ˆh)i

� �(yi, ŷ)� ⇠i, 8ŷ 2 Y,

Figure 3. Detection performance on TUD-Crossing.

Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0
Tang et al. [17] 79.9 96.5 75.6 % 79.1 % 6 0
Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0
Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 1. Tracking performance on TUD-Crossing.

where ⇠i are slack variables modeling the margin violations.
The structured output yi = (yli, y

b
i ) includes the class label

yli 2 {1,�1}, as well as the 2D bounding box position ybi .
For the loss function �, we employ the area of the bounding
box intersection A(ybi \ ŷb) over their union A(ybi [ ŷb)

�VOC(y, ŷ) =

(
0, if yl = ŷl = �1

1� [yl = ŷl]A(yb\ŷb)
A(yb[ŷb) , otherwise,

(2)
as it enables precise 2D bounding box localization. The ad-
vantage of the proposed structured learning of joint people
detectors is that the model learns that a detection with larger
overlap with the ground truth bounding box has higher score
than a detection with lower overlap. Hence, the single per-
son component should also have a lower score than the
double person component on double person examples (see
Fig 2(a)).
Introducing detection type. One limitation of the loss
�VOC for joint person detection is that it does not encour-
age the model enough to distinguish between a single per-
son and a highly occluded double person pair. This is due
to the large overlap of the ground truth bounding boxes, as
illustrated in Fig. 2(b). In order to teach the model to dis-
tinguish a single person and a highly occluded person pair,
we extend the structured output label with a detection type
variable ydt 2 {1, 2}, which denotes single person or dou-
ble person detection. The overall structured output is thus
given as y = (yl, yb, ydt). We can then additionally penal-
ize the wrong detection type using the loss

�VOC+DT(y, ŷ) = (1� ↵)�VOC(y, ŷ) + ↵
⇥
ydt 6= ŷdt

⇤
. (3)

Experimental results. In order to fairly compare our
joint detector with the joint detector proposed in [17], we

3

Method Rcll Prcsn MOTA MOTP
Single (DPM) 60.8 83.8 47.5 % 73.5 %
Joint-Design 65.0 91.7 57.6 % 75.2 %
Joint-Learn 1st 60.6 95.0 56.5 % 75.7 %
Joint-Learn 2nd 64.0 91.7 56.9 % 74.4 %
HOG [2] 51.0 95.5 47.8 % 73.2 %
Particle filter [6] - - 50.0 % 51.3 %

(a) PETS S2.L2 (frames 219–436).

Method Rcll Prcsn MOTA MOTP
Single (DPM) 24.8 90.1 21.8 % 70.6 %
Joint-Design 28.5 86.3 23.0 % 70.8 %
Joint-Learn 1st 28.9 86.2 23.4 % 69.8 %
Joint-Learn 2nd 32.7 86.7 26.8 % 69.3 %
HOG [2] 24.2 83.8 19.1 % 69.6 %

(b) PETS S1.L2.

Method Rcll Prcsn MOTA MOTP
Single (DPM) 90.5 97.7 87.9 % 77.2 %
Joint-Design 91.3 97.5 88.6 % 77.6 %
Joint-Learn 1st 91.0 98.5 89.3 % 77.7 %
Joint-Learn 2nd 91.0 98.0 88.7 % 76.9 %
Part-based [16] 81.7 91.3 79.3 % 74.1 %
GMCP [23] 95.0 94.2 89.1 % 77.5 %

(c) ParkingLot.

Figure 6. Tracking (top) and detection (bottom) performance on PETS S2.L2, S1.L2, and ParkingLot: Single (DPM): single-person detector;
Joint-Design: joint detector with designed occlusion patterns; Joint-Learn 1st: joint detector with learned occlusion pattern after the first
mining iteration; Joint-Learn 2nd: joint detector with learned occlusion pattern after the second mining iteration.

using this baseline detector are also quite competitive and
already outperform a state-of-the-art method [2] on S1.L2.
Joint detector with designed occlusion patterns (4.1).
Next, we evaluate the performance of our joint detector with
manually designed occlusion patterns (see Fig. 6). The joint
detector (blue) shows its advantage by outperforming the
single-person detector on all sequences. It achieves 10%
more recall at high precision for S1.L2 and ParkingLot. For
the S2.L2 test sequence, the joint detector outperforms the
baseline detector by a large margin from 0.9 precision level.
These detection results suggest that the joint detection is
much more powerful than the single detector; the designed
occlusion patterns correspond to compact appearance and
can be detected well.

The performance boost is also reflected in the track-
ing evaluation. Using the joint detector (Joint-Design)
yields a remarkable performance boost on the S2.L2 test
sequence (reaching 57.6% MOTA), improving MOTA by
10.1% points and MOTP by 1.7% points at the same time.
It also improves Recall by 4.2 and Precision by 7.9 com-
pared to the single-person detector (Single DPM). On the
S1.L2 and the ParkingLot sequences, the joint detector also
outperforms the single-person detector with a significantly
higher recall achieved by detecting more occluded targets.

By carefully analyzing and designing the occlusion pat-
terns, we obtain very competitive results on publicly avail-
able sequences, both in terms of detection and tracking,
which shows the advantage of the proposed joint detector
for tracking people in crowded scenes.
Joint detector with learned occlusion patterns (4.2). We
report the joint detector performance for one and two min-
ing iterations. As mentioned above, we employ the first half

of S2.L2 (frames 1–218) as mining sequence, extracting oc-
clusion patterns, but no further image information.

On the S2.L2 test sequence (frames 219–436), which is
more similar to the mining sequence than the other two se-
quences, our joint detector (black, Joint-Learn 1st, 56,5%
MOTA) is nearly on par with the hand-designed patterns af-
ter the first iteration, as shown in Fig. 6(a). This is because
the most dominant occlusion pattern is captured and learned
by the joint detector already. For the second iteration (cyan,
Joint-Learn 2nd), we also achieve higher recall on the S2.L2
test sequence, but the precision slightly decreases because
the dominant occlusion pattern of the second iteration only
contains about 48 missed targets, compared to 5861 ground
truth annotations, thus limiting potential performance im-
provement and introducing potential false positives.

Additionally, we compare our tracking results with [2]
and [6] on the S2.L2 sequence, as shown in Tab. 6(a). They
report tracking performance for the whole sequence, ours is
for the second half of the sequence. After the second itera-
tion of mining, we obtain a tracking performance of 56.9%
MOTA, significantly outperforming the other methods2.

Next, we verify the generalization ability of our algo-
rithm on two more sequences: PETS S1.L2, which is ex-
tremely crowded, and the ParkingLot sequence, which con-
tains relatively few occlusions. On PETS S1.L2, the learned
joint detector (black) is already slightly better than the Joint-
Design detector after the first iteration, as shown in Fig.
6(b). The second iteration (cyan) once again improves the
performance, both in terms of recall and precision. The
tracking result is also very promising. Directly mining

2Note that, for the first half of the S2.L2 sequence where we mine the
occlusion patterns, we even achieve 63.8% MOTA.
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Figure 5. Missed targets from PETS S2.L2 mining sequence and
mined occlusion patterns: (a) No person nearby; (b) interfered by
one person; (c) interfered by more persons; (d) mined occlusion
pattern – 1st iteration; (e) mined occlusion pattern – 2nd iteration.

gets can be occluders and/or occludees for a pair of persons
(Fig. 5(b)), or within a group of multiple people (Fig. 5(c)).
Here, we concentrate on mining occlusion patterns for pairs
of persons and consider the multiple people situation as a
special case of a person pair, augmented by distractions
from surroundings. Note that our algorithm can be eas-
ily generalized to multiple people occlusion patterns given
sufficient amount of mining sequences that contain certain
distributions of multi-people occlusion patterns. From the
missed targets (step 4), we determine the problematic oc-
clusion patterns and cluster them in terms of the relative po-
sition of the occluder/occludee pair. We only consider the
most dominant cluster. Fig. 5(d) and 5(e) show the domi-
nant occlusion pattern of the first and second mining iter-
ation. Note that we only mine occlusion patterns and no
additional image information (see next step).
Synthetic training example generation (step 6): We gen-
erate synthetic training images for the mined occlusion pat-
tern using the same synthetic image pool as in Sec. 4.1,
which requires the relative position of a person pair, as well

Algorithm 1 Joint detector learning for tracking
Input:

Baseline detector
Multi-target tracker
Synthetic training image pool
Mining sequence

Output:
Joint detector optimized for multi-target tracking

1: run baseline detector on mining sequence
2: run target tracker on mining sequence, based on the detection

result from baseline detector
3: repeat
4: collect missing recall from the tracking result
5: cluster occlusion patterns
6: generate training images for mined patterns
7: train a joint detector with new training images
8: run the joint detector on mining sequence
9: run the target tracker on mining sequence

10: until tracking results converge

as the orientation of each person. To that end, we sample
the relative position of a person pair from a Gaussian dis-
tribution centered on the dominant relative position cluster
from step 5. We further extract a dominant orientation of
the mined examples for occluders and occludees. Training
image generation, in principle, thus enables us to model ar-
bitrary occlusion patterns in each iteration. We generate 200
images for every new occlusion pattern, which amounts to
the same number of training images as we used in the con-
text of manually designed occlusion patterns. The major
benefit of learning these patterns is that more training im-
ages can be easily generated for the next iteration, specifi-
cally for those relevant cases that still remain unsolved.
Joint detector training with mined occlusion patterns
(step 7): The single-person component of the joint detector
is initialized with the same training images as the baseline
detector. For each iteration, we introduce a new double-
person component that models the mined occlusion pattern.
Joint training is based on the structured SVM formulation
from Sec. 2. Learning stops when the tracking performance
does not improve further on the mining sequence.

5. Experiments

We evaluate the performance of the proposed joint per-
son detector with learned occlusion patterns and its applica-
tion to tracking on three publicly available and particularly
challenging sequences: PETS S2.L2 and S1.L2 [12], as well
as the recent ParkingLot dataset [16]. All of them are cap-
tured in a typical surveillance setting. S2.L2 and S1.L2
show a substantial amount of person-person occlusions, in
particular. We employ the first half of S2.L2 (frames 1–218)
as our only mining sequence and use the remaining data for
testing. Note that our mining algorithm only extracts oc-
clusion patterns and no additional image information. Also
note that we do not mine on any of the other sequences, and
that the results on the second PETS sequence (S1.L2) and
ParkingLot allow to analyze the generalization performance
of our approach to independent sequences.

To quantify the tracking performance on the test se-
quences, we compute recall and precision, as well as the
standard CLEAR MOT metrics [5]: Multi-Object Tracking
Accuracy (MOTA), which combines false alarms, missed
targets and identity switches; and Multi-Object Tracking
Precision (MOTP), which measures the misalignment of the
predicted track with respect to the ground truth trajectory.
Single-person detector. We begin our analysis with the
baseline detector, which is a standard DPM single-person
detector [11]. For a fair comparison, we use the same syn-
thetic training images and component initialization as for
the joint detector. Note that this already yields a rather
strong baseline, with far better performance than DPM-
INRIA and DPM-VOC2009 (see Fig. 6). Tracking results

Missed	
  targets	
  from	
  PETS	
  S2.L2	
  mining	
  sequence	
  and	
  
mined	
  occlusion	
  paXerns:	
  (a)	
  No	
  person	
  nearby;	
  (b)	
  
interfered	
  by	
  one	
  person;	
  (c)	
  interfered	
  by	
  more	
  persons;	
  
(d)	
  mined	
  occlusion	
  paXern	
  –	
  1st	
  itera@on;	
  (e)	
  mined	
  
occlusion	
  paXern	
  –	
  2nd	
  itera@on.


