
A Dynamic Conditional Random Field Model for Joint Labeling of Object and Scene Classes
Christian Wojek, Bernt Schiele

Computer Science Department, TU Darmstadt, Germany
{wojek, schiele}@cs.tu-darmstadt.de

Objective

Pixel-wise labeling of object and scene classes in a
Dynamic Conditional Random Field framework[1]

• Exploit powerful object detector in CRF framework to
improve pixel-wise labeling of object classes

• Leverage temporal information

• Joint inference for objects and scene

• New Dataset with pixel-wise labels for highly dynamic
scenes

Plain CRF formulation
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• Seven class labels:
Sky, Road, Lane marking, Trees & bushes, Grass,
Building, Void

• Joint boosting[2] to obtain unary potentials
Softmax transform to obtain pseudo-probability:
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• Pairwise potentials with logistic classifiers (learnt with
gradient descent) [3]
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• Piecewise training of unary and pairwise potentials

• Distinguish east-west and north-south pairwise
relations

• No dynamic information encoded

• Object classes suffer from too short range interactions

Object CRF formulation
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• Enrich plain CRF model with additional longer range
dependency information for object classes

• Additional nodes for object hypotheses instantiated by
object detector

– Underlying pairwise cliques are extended by object
node to form cliques of three

– Object layout is learnt in discretized scale space
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• Platt’s method to obtain pseudo-probability for unary
object potential:

Ω(ot
n,xt;ΘΩ) = log

1

1+ exp(s1 · (vT · g({xt}ot
n
) + b) + s2)

Dynamic CRF formulation
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Kalman Filter

Homography

• Independently model scene and object motion
• Extended Kalman filter in 3D coordinate system for

object classes
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• For scene classes propagate CRF posterior as prior to
next time step
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Experiments on TUD Dynamic Scenes Dataset

• New dataset containing dynamic scenes

– 176 sequences of 11 successive frames (88 sequences
for training and 88 for testing)

– Last frame of each sequence with pixel-wise labels,
bounding box labels for object class car

• Publicly available from
http://www.mis.informatik.tu-darmstadt.de

• Unary classification performance
Normalization

on off
multi-scale single-scale multi-scale single-scale

Location
on 82.2% 81.1% 79.7% 79.7%
off 69.1% 64.1% 62.3% 62.3%

Features

• For unary and interaction potentials:

– Gray world normalization of input images
– Mean and Variance of 16 first Walsh-Hadamard

transform coefficients from CIE L, a and b channel,
extracted at multiple scales (8, 16 and 32 pixel
windows)

– Node coordinates in regular 2D lattice

• HOG features [4] for object node unary potentials

Experiments on Sowerby Dataset

• Evaluation of plain CRF (only static images)
Pixel-wise accuracy

Unary classification plain CRF model
He et al. [5] 82.4% 89.5%
Kumar&Hebert [3] 85.4% 89.3%
Shotton et al. [6] 85.6% 88.6%
This paper 84.5% 91.1%

Input image Unary
classification

plain CRF
result

Input image Unary
classification

plain CRF
result

Sky Street object Road surface Building
Vegetation Car Road marking

• Sample segmentations and detections
Input image Ground truth

Unary
classification

plain CRF Object CRF Dynamic CRF
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(b)
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Void Sky Road Lane marking
Trees & bushes Grass Building Car

(a) (b) (c)
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• Pixel-wise evaluation of object class car

No objects With object layer
Including object

dynamics
Recall Precision Acc. Recall Precision Acc. Recall Precision Acc.

CRF 50.1% 57.7% 88.3% 62.9% 52.3% 88.6% 70.4% 57.8% 88.7%
dyn. CRF 25.5% 44.8% 86.5% 75.7% 50.8% 87.1% 78.0% 51.0% 88.1%

• Confusion matrix for all classes
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Sky 10.4% 91.0 0.0 0.0 7.7 0.5 0.4 0.3 0.1
Road 42.1% 0.0 95.7 1.0 0.3 1.1 0.1 0.5 1.3
Lane marking 1.9% 0.0 36.3 56.4 0.8 2.9 0.2 1.8 1.6
Trees & bushes 29.2% 1.5 0.2 0.0 91.5 5.0 0.2 1.1 0.4
Grass 12.1% 0.4 5.7 0.5 13.4 75.3 0.3 3.5 0.9
Building 0.3% 1.6 0.2 0.1 37.8 4.4 48.4 6.3 1.2
Void 2.7% 6.4 15.9 4.1 27.7 29.1 1.4 10.6 4.8
Car 1.3% 0.3 3.9 0.2 8.2 4.9 2.1 2.4 78.0
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